4К в пикселях


Ответы Mail.ru: Качество 4к - это сколько мегапикселей?

4 ка больше fullhd на 4 тобижь 4 умножить на 1080p

Чтоб на телефоне смотреть?

какой то упоротый вопрос .. вбей 4к камеру, и посмотри. У всех по разному.

4k - это 4 тыщи. Т. е. 4000. а как там в матрице ляжет иногда делают 3920, иногда 4096, а вторая сторона в два раза меньше. Итого 4 на 2 = 8 мега-пикселей. Всё что больше в матрице используется для стабилизации изображения. Если матрица меньше 8Мп то снимать 4k она не может.

Это 8 Мп. Но если у вас матрица больше 8 Мп, это ещё отнюдь не означает, что ваша камера может снимать 4k.

Телевидение сверхвысокой чёткости включает в себя два цифровых стандарта 4K UHDTV (2160p) и 8K UHDTV (4320p), предложенных NHK Science & Technical Research Laboratories. ...Данные в MPEG-4 были переданы со скоростью 40 Мбит/с, при частоте 25 кадров в секунду с разрешением изображения 3840×2160 пикселей, что в 4 раза выше, чем у кадра стандарта FullHD (1920×1080). Иными словами для фулл эйчь ди 1920 на 1080 поток сигнала 10 мегабит, а для 4К 40 мегабит в секунду соответственно. Источник: <a rel="nofollow" href="https://ru.wikipedia.org/wiki/Телевидение_сверхвысокой_чёткости" target="_blank">https://ru.wikipedia.org/wiki/Телевидение_сверхвысокой_чёткости</a>

touch.otvet.mail.ru

Цифровое анаморфирование — Википедия

Соотношение сторон пикселя разных стандартов с анаморфированием и без. Пунктиром обозначен размер пикселя 576i и 480i анаморфированного видео

Цифрово́е анаморфи́рование — технология передачи и записи широкоэкранного изображения цифрового телевидения при помощи стандартов разложения, изначально рассчитанных на классическое соотношение сторон экрана 4:3[1]. При этом информационная ёмкость такого кадра используется наиболее эффективно за счёт трансформации соотношения сторон пикселя. Кроме цифрового телевещания стандартной чёткости, технология применяется при мастеринге DVD-дисков и является цифровым аналогом оптического анаморфирования.

Подобный принцип применяется в цифровом кинематографе при использовании анаморфотной оптики с цифровой кинокамерой.

Современное цифровое телевещание стандартной чёткости (SDTV) в большинстве стран использует технологию анаморфирования из-за повсеместного распространения широкоэкранных телевизоров и соглашений о постепенном переходе к вещанию высокой чёткости[2]. Изображение формата 16:9 передается анаморфированным: в общепринятых стандартах разложения 576i и 480i, но с «прямоугольным пикселем». В этих стандартах, предусматривающих соотношение сторон экрана 4:3, количество элементов строки считается равным 720. Это результат международного соглашения, закреплённого в документе, получившем название 601-й рекомендации МККР[3].

С учётом запаса гашения в стандарте 576i изображение занимает 702 пикселя, тогда как в американском 480i на полезное изображение отводится 704. При этом, из-за разного количества строк в разных стандартах, одинаковое число отсчётов в строке привело к небольшому отличию пикселя стандартного кадра 4:3 от квадратной формы[4]. В случае использования анаморфирования строка изображения содержит столько же пикселей, но более вытянутых по горизонтали. Совершенно квадратный пиксель используется только в международных стандартах телевидения высокой чёткости 1920×1080 и 1280×720, однако в цифровых форматах видеозаписи HDV и HDCAM пиксель также имеет прямоугольную форму при пониженной горизонтальной чёткости 1440×1080[5]. Соотношение сторон пикселей разных стандартов с использованием анаморфирования и без него отражено в таблице[6]:

Стандарт
разложения
Соотношение
сторон экрана
Размеры
изображения
в пикселях
Соотношение
сторон пикселя
Ширина в
квадратных пикселях
МККР 601 Цифровое МККР 601 Цифровое
576i 4:3 702×576 59:54 12:11 769 768
анаморф. 16:9 118:81 16:11 1026 1024
480i 4:3 704×480 10:11 640
анаморф. 16:9 40:33 853
1080i анаморф. 16:9 1440×1080 4:3 1920

Информация о соотношении сторон пикселя и экрана передаётся вместе с сигналом изображения в виде служебного бита «AR» (англ. Aspect Ratio). Для экрана 16:9 он принимает значение «1», а для обычного экрана 4:3 передаётся «0»[7]. Дополнительная информация о заполнении экрана приёмника передаётся в составе 14-битного кода WSS (англ. Wide Screen Signaling), размещённого в 23-й строке кадрового гасящего импульса при стандартной чёткости, или более современной 4-битной метки AFD (англ. Active Format Description)[8][9][10]. В случае, если изображение не заполняет передаваемый кадр полностью, информация о дополнительных чёрных полях передаётся специальным 5-байтным кодом «Bar Data»[7]. Телевизор автоматически отображает каждый переданный элемент на экране с исходным соотношением сторон на основании полученной информации. Благодаря этому изображение на широкоэкранных телевизорах 16:9 демонстрируется в нормальных пропорциях, заполняя весь экран. Телевизоры со стандартным экраном могут по выбору показывать передачу с пансканированием и потерей краев изображения или с экранным каше без обрезки. В последнем случае используется только часть строк, отображаемых кинескопом.

Одно из обозначений анаморфированного DVD

Диски DVD-Video могут использовать такую же технологию цифрового анаморфирования, кодируя изображение с «прямоугольным пикселем», растянутым по горизонтали[11]. За счёт этого горизонтальный масштаб записанного изображения отличается от вертикального. При декодировании видеозаписи изображение отображается в оригинальной пропорции 16:9 в соответствии со значением служебного бита «AR». При такой технологии горизонтальная чёткость получаемого изображения, ниже вертикальной, пропорционально «растягиванию» пикселя. Широкоэкранный телевизор отображает такое видео в нормальных пропорциях во весь экран. На аналоговом видеовыходе плеера формируется изображение, достроенное чёрными каше до кадра 4:3, давая на экране обычного телевизора правильные пропорции кадра. Такая технология даёт возможность более эффективно использовать высоту кадра 4:3 телевидения стандартной чёткости при записи широкоэкранного видео. Без анаморфирования кадр 16:9, передаваемый без обрезки, занимает лишь часть активных строк изображения: 432 из 576 в стандарте разложения 576i и ещё меньше в стандарте 480i.

Особенно эффективно сжатие пикселя при записи фильмов широкоэкранных форматов с леттербоксингом. В отличие от пансканирования, это даёт не обрезанное изображение таких фильмов, но использует лишь небольшую часть вертикального пространства телекадра. В телевидении стандартной четкости с ограниченной разрешающей способностью это приводит к потере качества и детализации. Особенно это заметно при использовании американского стандарта разложения 480i, в котором широкоэкранный фильм с соотношением сторон 2,35:1 занимает не более 270 строк. При цифровом анаморфировании высота телевизионного поля используется полностью, повышая качество видеокопии. Причём фильмы с соотношением сторон, большим, чем 16:9, все равно отображаются на широкоэкранном телевизоре с чёрными полями. Однако в видеозаписи эти поля занимают значительно меньшую высоту кадра, увеличивая вертикальное разрешение конечного изображения при неизменном горизонтальном. Стандартного обозначения анаморфированной видеозаписи не существует, потому что различные релизеры обозначают такие диски по-своему. В России большинство таких DVD имеют обозначение «16:9» (на рисунке). Диски без анаморфирования обозначаются «4:3» и в случае, если содержат широкоэкранный фильм, на экране телевизора с экраном 16:9 он будет отображаться в режиме «почтовой марки».

Эти типы видеодисков используют стандарты разложения телевидения высокой четкости, изначально рассчитанные на соотношение сторон экрана 16:9 при квадратном пикселе. Поэтому цифровое анаморфирование изображения на таких дисках не требуется. Однако в случае использования обычных стандартов разложения, также поддерживаемых Blu-ray-дисками, может быть использовано цифровое анаморфирование, аналогичное DVD.

В современном кинопроизводстве анаморфирование пикселя используется при изготовлении цифровых копий широкоэкранных фильмов формата Scope, снятых анаморфотными киносъёмочными объективами. Использование такой оптики, создающей специфический оптический рисунок, привносит характер изображения, который у зрителей ассоциируется с «голливудским» видением[12]. Поэтому некоторые операторы-постановщики используют такую оптику в качестве изобразительного приёма. Кроме того, это позволяет полноценно использовать вертикальное пространство матрицы цифровой кинокамеры с соотношением сторон кадра 1,33:1[13]. При этом анаморфированное (сжатое по горизонтали) изображение, даваемое съёмочным объективом, заполняет всю площадь матрицы, максимально используя её разрешающую способность. При дальнейшей обработке полученного цифрового изображения производится его цифровая трансформация в формат 2,39:1 за счёт растягивания пикселей: эта возможность предусматривается в программном обеспечении для монтажа цифрового кино и видеоредакторах. В целом такой процесс является цифровым аналогом киноплёночных форматов «Синемаскоп» или «Панавижн» с той разницей, что вместо оптической трансформации анаморфотным объективом кинопроектора изображение принимает нормальные пропорции уже в процессе цифрового монтажа в расчёте на сферическую оптику цифровых кинопроекторов. В случае вывода такого фильма на киноплёнку исходные пропорции изображения сохраняются, поскольку совпадают с форматом анаморфированных фильмокопий.

Широкоэкранный цифровой кинофильм также может быть снят традиционным сферическим объективом меньшего фокусного расстояния с последующей обрезкой изображения по вертикали. Такая же технология используется в плёночном формате «Супер-35», предназначенном для широкоэкранных фильмов. Недостатком съёмки с анаморфированием является большая стоимость аренды съёмочной оптики и её громоздкость. Светосила анаморфотных объективов ниже сферических, что требует более интенсивного освещения снимаемой сцены. В некоторых случаях качество изображения, даваемого сферической оптикой, недостижимо для анаморфотной. Поэтому большая часть фильмов формата Scope в настоящее время снимается аксиально-симметричными объективами без анаморфирования[14].

ru.wikipedia.org

Какой размер в пикселях имеет лист формата А4 (А3)?

При подготовке изображений к печати у многих пользователей возникает вопрос о размерах и соотношении сторон. И, если с общепринятыми бумажными форматами и их размерами народ знаком (А4 – это лист 297×210 мм), то с переводом их в пиксели возникают сложности. Сегодня я расскажу какой размер в пикселях имеют листы формата А3 и А4 при разном качестве изображения.

Количество пикселей для листа А4 зависит от параметра DPI, который вы применяете:

  • при dpi=75, А4 имеет 877×620 px
  • при dpi=150, А4 имеет 1754×1240 px
  • при dpi=300, А4 имеет 3508×2480 px

Аналогичным образом устанавливается соответствие точек размеру листа А3:

  • при dpi=75, А4 имеет 877×1240 px
  • при dpi=150, А4 имеет 1754×2480 px
  • при dpi=300, А4 имеет 3508×4961 px

Как определяется количество точек соответствующее формату?

Давайте подробно рассмотрим, откуда эти цифры берутся и как считаются.

Для начала важно понять одну простую вещь – перевести линейные размеры бумажного листа в пиксели без дополнительных данных невозможно вот по какой причине:

В линейных размерах (мм, см) не учитывается такая характеристика, как качество изображения. Качество картинки определяется количеством точек на единицу площади. Можно сделать пиксель размером в 1 кв.мм, тогда лист А4 будет равен 297×210 пикселей (это пример не соответствующий стандартам, в реальности же существуют общепринятые нормы).

Качество изображений принято измерять в количестве точек на квадратный дюйм (dots per inch) – DPI. 1 дюйм равен 25,4 мм.

Стандартные размеры DPI используемые в печати:

  • 75 подойдет для документов с текстом;
  • 150 – минимальное для печати фотографий;
  • 300 – оптимальное качество для печати снимков;

Давайте посмотрим на примерах, как все это рассчитывается. Когда данные о качестве есть, можем свести все воедино и вычислить, сколько пикселей уложится в наш А4 (297×210 мм).

Расчет размера A4 в пикселях при 150 dpi

  • высота – 297*150/25,4=1754 px
  • ширина – 210*150/25,4=1240 px

Расчет размера A4 в пикселях при 300 dpi

  • высота – 297*300/25,4=3508 px
  • ширина – 210*300/25,4=2480 px

Если исходное изображение изначально имеет меньшее количество пикселей, его все равно можно распечатать на лист А4, но надо понимать, что четкость пострадает. Чтобы максимально снизить негативный эффект при печати в таких ситуациях старайтесь применять кратные изменения размеров (в 2, 4, 8 и т.д. раз).

Для того, чтобы избежать различных искажений (вытянутые или сплюснутые объекты) следует соблюдать пропорции сторон (уменьшать или увеличивать нужно одновременно высоту и ширину на одинаковый множитель)

biznessystem.ru

Как записать формат А4 в пикселях(ширина, высота)?

2480х3508-международный формат

Формат А4 измеряется в дюймах, сантиметрах, милиметрах и пр. А вот пиксели в этом не измеряются. Это просто точки не определенного размера. У разных графических устройств физический размер пикселя может быть разный. Чтобы превести А4 в пиксели нужно знать количество точек на единицу длины. Дальше - банальная арифметика. И для устройств с разным физическим размером пикселя А4 в пикселях будет разный.

Вся арифметика - в 3-м ответе ( у Брюса Ли) :-)

<img src="//otvet.imgsmail.ru/download/22946736_c650e29ee94f62c9a672cf993621ccf2_800.jpg" alt="" data-lsrc="//otvet.imgsmail.ru/download/22946736_c650e29ee94f62c9a672cf993621ccf2_120x120.jpg" data-big="1">

Формат А4 не может измеряться в пикселях, так как это теплое с мягким. Соответствие линейных размеров количеству точек зависит от качества изображения, измеряемого в DPI (точках на дюйм). Соответствие листа А4 размерам в пикселях в зависимости от dpi можно посмотреть тут - <a rel="nofollow" href="http://biznessystem.ru/2017/04/kakoj-razmer-v-pikselyah-imeet-list-formata-a4/" target="_blank">http://biznessystem.ru/2017/04/kakoj-razmer-v-pikselyah-imeet-list-formata-a4/</a>, там же приведен алгоритм расчета и вы можете самостоятельно выяснить нужные размеры для каждого конкретного случая. Наиболее распространенные варианты: при dpi=150, А4 имеет 1754×1240 px при dpi=300, А4 имеет 3508×2480 px

Размер формата А4 описывается как соотношение сторон и зависит от выходного качества печати, чем выше качество, тем больше плотность пикселей (DPI - точек на дюйм): <a rel="nofollow" href="http://abc-paper.ru/format-a-size/" target="_blank">http://abc-paper.ru/format-a-size/</a> Вот живой пример, размер листа А4 -210х297 мм при разрешении 100DPI = 210мм/25,4мм * 100 = 827 (округляем) и 297мм/25.4 мм *100= 1169 итог 827 х 1169 пикселей 300DPI = 210мм/25,4мм * 300 = 2550 (округляем) и 297мм/25.4 мм *300= 3507 итог 2550 х 3507 пикселей И так в зависимости от качества печати DPI считаешь нужный размер в пикселях.

Если создаёте интернет-страницу для сайта и хотите сохранить размеры текста при переносе с документа Microsoft Word, то лучше использовать пропорции 564x806 в пикселях. Это вычислено опытным путём.

touch.otvet.mail.ru

Пиксель — Википедия

Увеличенный участок растрового изображения: слева — отдельные пиксели, полученные размножением исходных при масштабировании, справа — то же, но с бикубической интерполяцией.

Увеличенный участок растрового изображения.

Реконструкция из множества пиксельных значений, использование точек, линий, сглаживания

Матрица ЖК-монитора

Пи́ксель, пи́ксел (иногда пэл, англ. pixel, pel — сокращение от piсtures element, которое в свою очередь сокращается до pix element,[1] в некоторых источниках piсture cell — букв. элемент изображений) или элиз (редко используемый русский вариант термина) — наименьший логический двумерный элемент цифрового изображения в растровой графике, или [физический] элемент матрицы дисплеев, формирующих изображение. Пиксель представляет собой неделимый объект прямоугольной или круглой формы, характеризуемый определённым цветом (применительно к плазменным панелям, газоплазменная ячейка может быть восьмиугольной. Растровое компьютерное изображение состоит из пикселей, расположенных по строкам и столбцам. Также пикселем ошибочно называют элемент светочувствительной матрицы (сенсель — от sensor element).

Чем больше пикселей на единицу площади содержит изображение, тем более оно детально. Максимальная детализация растрового изображения задаётся при его создании и не может быть увеличена. Если увеличивается масштаб изображения, пиксели превращаются в крупные зёрна. Посредством интерполяции ступенчатость можно сгладить. Степень детализации при этом не возрастает, так как для обеспечения плавного перехода между исходными пикселями просто добавляются новые, значение которых вычисляется на основании значений соседних пикселей исходного изображения.

Каждый пиксель растрового изображения — объект, характеризуемый определённым цветом, яркостью и, возможно, прозрачностью. Один пиксель может хранить информацию только об одном цвете, который и ассоциируется с ним (в некоторых компьютерных системах цвет и пиксели представлены в виде двух раздельных объектов, например, в видеосистеме ZX Spectrum).

Пиксель — это также наименьшая единица растрового изображения, получаемого с помощью графических систем вывода информации (компьютерные мониторы, принтеры и т. д.). Разрешение такого устройства определяется горизонтальным и вертикальным размерами выводимого изображения в пикселях (например, режим VGA — 640×480 пикселей). Пиксели, отображаемые на цветных мониторах, состоят из триад (субпикселей красного, зелёного и синего цветов, расположенных рядом в определённой последовательности). Для ЭЛТ-монитора число триад на один пиксель не фиксировано и может составлять единицы или десятки; для ЖК-монитора (при правильной настройке ОС) на один пиксель приходится ровно одна триада, что исключает муар. Для видеопроекторов и печатающих устройств применяется наложение цветов, где каждая составляющая (RGB для проектора или CMYK для принтера) целиком заполняет данный пиксель.

Кратные Дольные
величина название обозначение величина название обозначение
101 пикс декапиксель дапикс dapel 10−1 пикс деципиксель дпикс dpel
102 пикс гектопиксель гпикс hpel 10−2 пикс сантипиксель спикс cpel
103 пикс килопиксель кпикс kpel 10−3 пикс миллипиксель мпикс mpel
106 пикс мегапиксель Мпикс Mpel 10−6 пикс микропиксель мкпикс µpel
109 пикс гигапиксель Гпикс Gpel 10−9 пикс нанопиксель нпикс npel
1012 пикс терапиксель Тпикс Tpel 10−12 пикс пикопиксель ппикс ppel
1015 пикс петапиксель Ппикс Ppel 10−15 пикс фемтопиксель фпикс fpel
1018 пикс эксапиксель Эпикс Epel 10−18 пикс аттопиксель апикс apel
1021 пикс зеттапиксель Зпикс Zpel 10−21 пикс зептопиксель зпикс zpel
1024 пикс иоттапиксель Ипикс Ypel 10−24 пикс иоктопиксель ипикс ypel
     применять не рекомендуется

Слово «пиксель» было впервые опубликовано в 1965 году Фредериком Биллингсли из лаборатории реактивного движения для описания графических элементов видеоизображений от космических зондов к Луне и Марсу. Однако Биллингсли не сам придумал термин. Он узнал слово «пиксель» от Кита Макфарленда (Link Division of General Precision, Пало-Алто), который также не знал, откуда слово взялось. Макфарленд просто сказал, что оно «использовалось в то время» (около 1963 года).

Слово представляет собой сочетание pix (от picture — изображение) и element (элемент). Слово pix появилось в заголовках журнала Variety в 1932 году, как аббревиатура для слова pictures в отношении фильмов. К 1938 году «pix» использовалось фотожурналистами в отношении неподвижных изображений.

Понятие «элемент изображения» относится к самым ранним дням телевидения, например, как Bildpunkt (немецкое слово для пикселя, буквально «точка изображения») в немецком патенте от 1888 года за авторством Пола Нипкова. По другой версии, самая ранняя публикация самого термина элемент изображения имела место в журнале Wireless World в 1927 году, хотя термин использовался и ранее в различных патентах США, поданных ещё в 1911 году.

Некоторые авторы объясняют пиксель как picture cell (клетка или ячейка изображения), начиная с 1972 года. В графике и обработке изображений и видео вместо pixel часто используется сокращение pel. Например, IBM использовали его в своем Technical Reference для первой модели PC.

Относительно нормативности использовании термина в форме «пиксел» либо «пиксель» имеются различные мнения. Так, «Русский орфографический словарь РАН»[4] квалифицирует форму «пиксел» как общеупотребительную, а форму «пиксель» как характерную разговорной профессиональной или разговорной и профессиональной речи (в сокращениях словаря нет расшифровки для разг. проф. речи, но есть отдельно разг. — разговорное, проф. — профессиональное[5]; однозначной расшифровки этого определения не даёт и справочная служба русского языка на портале Грамота.ру[6]). С другой стороны, действующий ГОСТ 27459-87[7] предусматривает термин «пиксель» как единственно возможный для использования в области применения указанного стандарта (компьютерная графика) и который «является обязательным для применения в документации и литературе всех видов, входящих в сферу действия стандартизации или использующих результаты этой деятельности». При этом ГОСТ 27459-87 под термином «пиксель» понимает «наименьший элемент поверхности визуализации, которому может быть независимым образом заданы цвет, интенсивность и другие характеристики изображения».

Мониторы компьютеров формируют из пикселей изображения, которое часто представляет собой графический интерфейс пользователя. Разрешением этого изображения на экране компьютерного монитора называется разрешением дисплея и определяется свойствами этого дисплея и видеокартой компьютера. Жидкокристаллические мониторы имеют определяемое их конструкцией собственное (так называемое «родное») разрешение. Каждый пиксель цветного монитора состоит из триад светящихся элементов красного, зелёного и синего цвета, число таких триад и является родным разрешением. На некоторых мониторах на электронно-лучевых трубках, число строк развёртки электронного луча и модуляции его яркости, формирующей элементарные пиксели вдоль строки, может быть фиксированным, а потому фиксируется родное разрешение. Однако большинство мониторов на электронно-лучевых трубках не имеет фиксированного числа строк развёртки электронного луча, а потому они не имеют «родного» разрешения — вместо этого они имеют целый ряд разрешений, которые аппаратно поддерживаются как самим монитором, так и управляющей им видеокартой. В большинстве случаев пользователь жидкокристаллического дисплея заинтересован в получении максимально чёткого изображения, в таком случае рекомендуется настраивать разрешение дисплея компьютера соответствующим «родному» разрешению монитора.

Шкала пикселей использует в астрономии угловое расстояние между двумя объектами на небе, которые попадают в один пиксель друг от друга на детекторе (CCD или инфракрасного чипа). Шкала s измеряется в радианах отношением пиксельного р и фокусного расстояния F из предыдущих оптики, S = P / F (фокусное расстояние является произведением фокусного соотношения по диаметру соответствующей линзы или зеркала). Поскольку р обычно выражается в единицах угловых секунд на пиксель, потому что 1 радиан равен 180/π×3600≈206,265 секунды дуги, из-за диаметра часто даются в миллиметрах и размеров пикселей в микрометре, что даёт ещё один фактор 1000, формула часто используется как s=206p/f.

Многие дисплеи и изображения систем по разным причинам не способны отображать или воспринимать различные цветовые каналы в одном и том же месте. Таким образом, пиксельная сетка делится на одноцветные области, которые способствуют отображению или восприятию цвета при просмотре на расстоянии. В LCD-, LED- и плазменных дисплеях эти одноцветные области являются отдельно адресуемыми элементами (субпикселями). Например, ЖК-дисплеи, как правило, делят каждый пиксель по горизонтали на три субпикселя. Когда квадратный пиксель делится на три субпикселя, каждый субпиксель обязательно является прямоугольным. В терминологии дисплейной промышленности субпиксели часто называют пикселями, так как они являются основными адресуемыми элементами в точке видимых аппаратных средств, а следовательно, используются пиксельные схемы, а не подпиксельные.

Мегапиксель (Mpx) составляет миллион пикселей; этот термин используется не только для количества пикселей в изображении, но и выражает количество сенсорных элементов изображения цифровых камер или числа дисплейных элементов цифровых дисплеев. Например, камера, которая выдаёт 2048×1536 пикселей изображения (3 145 728 готовых изображений пикселей), обычно использует несколько дополнительных строк и столбцов элементов датчика и обычно говорят «3,2 мегапикселя» или «3,4 мегапикселя», в зависимости от того, содержит ли «эффективные» или «общее» количество пикселей.

ru.wikipedia.org

A4 — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. A4 (значения). Соотношение листа формата A4 и листов серии A других размеров

A4 — формат бумаги, определённый стандартом ISO 216, основан на метрической системе мер. Его размеры — 210×297 мм, диагональ — 364 мм. Площадь листа формата A4 = 1/16 м².

Лист формата A4 получен путём последовательного деления пополам листа формата A0, имеющего площадь ровно 1 м²: А0:2=А1, A1:2=А2, А2:2=А3, А3:2=А4. В свою очередь, при делении пополам листа A4 получится два листа формата A5, при этом соблюдается подобие форм листа и его половины, а соотношение сторон равно 1:√2 (Соотношение Лихтенберга). Численно размеры 297 мм и 210 мм кратны числителю и знаменателю рационального приближения к значению √2: 99/70 = 1,4142857. Погрешность не превышает 1/10000, несмотря на небольшой знаменатель.

Формат A4 очень широко используется для документации, чертежей, писем, журналов, бланков, расходных материалов для принтеров и копировальной техники.

Еще в начале двадцатого века единых размеров для деловых бумаг и конструкторской документации в Европе вообще не существовало. Каждая бумажная фабрика выпускала листы своего собственного формата.

Пропорции прямоугольного листа также выбирались различными. «Золотое сечение» 1:1,618, которое так любили архитекторы и живописцы Возрождения, оказалось совсем не подходящим в полиграфии и книгоиздательстве. При складывании такого листа вдвое пропорции получаемой страницы изменялись и становились неудобными для работы.

Стандартная пачка бумаги формата А4

Более подходящими для практических нужд оказались другие пропорции: лист, стороны которого относились, как единица к квадратному корню из двух, при складывании пополам давал прямоугольник с тем же соотношением. Иначе говоря, он был подобен первоначальному.

Доктор наук Вальтер Порстманн, немецкий инженер, математик и теоретик стандартизации в промышленности, один из создателей немецкой системы DIN, предложил стандартизовать размеры бумаги, взяв за основу лист с соотношением сторон 1:1,4143 и площадью в один квадратный метр.

Проект Комитета по Производственным стандартам Германии был опубликован 18 августа 1922 года. Исходный формат получил обозначение А0. Результаты складывания его вдвое — соответственно A1, A2 и т. д. Таким образом, формат А4 — это 1/16 часть большого листа формата A0.

Стандарт обозначения форматов бумаги для чертежей по ГОСТ 3450-60.

В чертёжной терминологии[1] по ГОСТ 3450-60 формат А4 являлся исходным для всех остальных и назывался формат 11, Форматы обозначались двумя цифрами, первая из которых указывает кратность одной стороны формата размеру 297 мм, а вторая — кратность другой стороны формата размеру 210 мм. Формату А3 соответствует формат 12, А2 — 22, А1 — 24. Произведение двух цифр в обозначении формата определяет количество форматов 11, которое содержится в данном формате. Например, формат 44 с размерами сторон листа 1189×841 мм содержит 4×4, то есть 16 форматов 11. Кроме этого, таким образом обозначены форматы бумаги, отсутствующие в серии А, например, формат 14 для чертежей длинных объектов. По ГОСТ 2.301-68 обозначение форматов для чертежей принято в соответствии с ISO 216.

ru.wikipedia.org


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.