Бесшумные корпуса для компьютеров


Как я сделал абсолютно бесшумный компьютер / Habr

Почти три десятилетия я пытаюсь делать мои компьютеры тише. Жидкостное охлаждение собственного изготовления, гидродинамические подшипники с магнитной стабилизацией, акустические демпферы, силиконовые амортизаторы – я использовал всё, что можно представить. И на прошлой неделе я, наконец, сумел построить совершенно бесшумный компьютер. Без лишних слов, знакомьтесь: Streacom DB4. Корпус размером 26 x 26 x 27 см без единого вентилятора. У него вообще нет никаких движущихся частей. Полная тишина, 0 дБ.

Если снять с него верхнюю и четыре боковых стенки (штампованный алюминий, толщина стенки 13 мм), вы увидите минимальную раму и центральную монтажную пластину для материнской платы формата mini-ITX (порты ввода/вывода смотрят вниз, сквозь дно корпуса).

Когда я выбирал компоненты, то вариантов материнской платы такого формата было всего четыре:

  • ASUS ROG Strix B350-I Gaming
  • Gigabyte AB350N-Gaming-WiFi ITX
  • MSI B350I Pro AC
  • ASRock Fatal1ty AB350 Gaming-ITX/ac

Внимательный читатель заметит, что все материнки заточены под AMD (Socket AM4). Вся эта шумиха по поводу Meltdown/Spectre привела к тому, что мои предыдущие системы на базе Intel стали небезопасными, и для меня это стало последней каплей – всё, больше никаких Intel CPU.

В итоге я остановился на плате ASRock AB350 Gaming-ITX/ac.

Хотя теоретически в DB4 можно установить любую материнку mini-ITX, корпус разработан для пассивного охлаждения с тепловыми трубками, передающими тепло, создаваемое CPU и GPU на боковые панели, излучающие его и удаляющие при помощи конвекции. Тщательный анализ путей прокладки трубок и необходимых зазоров показал, что определённые материнки не подойдут для этого корпуса – будут мешаться компоненты.

  • У Gigabyte коннектор питания ATX зачем-то расположен наверху платы, и это препятствие было никак не обойти.
  • У Asus есть группа стабилизаторов напряжения, в которые эти трубки упирались бы. Любой человек, разбирающийся в конденсаторах и тепле, поймёт, что это был бы путь к катастрофе.
  • У MSI имеется огромный радиатор для стабилизаторов напряжения, который мешался бы по меньшей мере одной (возможно, двум) трубкам.

ASRock оказалась единственной материнкой, которая уместится в DB4, и не будет мешаться дополнительному набору трубок LH6 Cooling Kit. Пожалуй, нагляднее будет продемонстрировать, как это выглядит после установки трубок:

Чтобы лучше понять, насколько малы оказались зазоры, вот фото с другого угла:


Да, кое-где зазор буквально составляет доли миллиметра

В комплекте с DB4 идёт оборудование, с помощью которого тепло от CPU передаётся на одну из боковых панелей – это четыре тепловые трубки и один распределитель тепла. Такая конфигурация поддерживает CPU мощностью 65 Вт. Если добавить LH6 Cooling Kit, то CPU можно подсоединить к двум боковым панелям шестью трубками и тремя распределителями, что позволит использовать CPU до 105 Вт.

В такой системе с пассивным охлаждением ограничением мощности CPU служат возможности по рассеиванию тепла. Для справки:

  • Ryzen 5 2400G 4C8T 3.6GHz — 46-65 Вт
  • Ryzen 5 1600 6C12T 3.2GHz — 65 Вт
  • Ryzen 5 1600X 6C12T 3.6GHz — 95 Вт
  • Ryzen 7 1700 8C16T 3.0GHz — 65 Вт
  • Ryzen 7 1700X 8C16T 3.4GHz — 95 Вт
  • Ryzen 7 1800X 8C16T 3.6GHz — 95 Вт

Так что стоковый DB4 поддерживает вплоть до 2400G/1600/1700 – без всякого разгона – а комплект DB4+LH6 поддержит даже 1600X/1700X/1800X — и позволит немного разогнаться.

В отличие от Intel, время поддержки сокетов у которой сравнимо со временем, необходимым для распаковки очередного процессора, у AMD время поддержки сокетов гораздо больше. AM4 будет поддерживаться до 2020. Отсюда и вырос мой хитрый план – начать в 2018 году с CPU, который без проблем смогут охлаждать DB4+LH6, который можно разгонять и подвергать стресс-тестам пару лет, а потом, если преимущества апгрейда будут очевидными, добавить более эффективный CPU, когда последние процессоры для AM4 сойдут с конвейера, на базе чего можно будет существовать ещё лет пять.

Всё это привело к тому, что я поставил Ryzen 5 1600 на 65 Вт. Поскольку материнка у меня B350, я имею возможность разгонять проц до 1600X/95 Вт без особых проблем.

Если вам хватает 65 Вт и не нужен разгон, вы можете отказаться от LH6 Cooling Kit. Тепловые трубки у DB4 короче, чем у LH6, и не заходят за край материнки – поэтому никаких ограничений, упомянутых в связи с платами Gigabyte, Asus и MSI, у вас не будет.

Что до памяти, тол я выбрал Corsair Vengeance LPX CMK32GX4M2Z2400C16 32GB (2x16GB) DDR4.

С Corsair Vengeance LPX RAM у меня никогда не было проблем. Она была указана в списке совместимых модулей для моей материнской платы, а ещё её смогли разогнать до 3200 МГц на точно такой же матери, что и у меня, поэтому я был уверен, что смогу достичь хорошего разгона с минимальными усилиями – естественно, с учётом «кремниевой лотереи». Я собирал компьютер не для игр и не использовал APU, поэтому для меня больше значения имел объём памяти, чем какие-то запредельные скорости.

SSD – единственный вариант абсолютно тихого накопителя, я избавился от последнего жёсткого диска более семи лет назад, поэтому система изначально была нацелена на использование SSD. Вопрос был только – какого именно.

Поскольку сзади на материнке есть слот M.2, я решил выбрать 1 Тб Samsung 960 Evo NVMe в качестве основного и 1 Тб Samsung 860 Evo SATA для страховочного.

Я бы предпочёл два диска NVMe (чтобы было меньше кабелей), но у материнки ASRock есть только один слот M.2. У Asus есть два таких слота, но она несовместима с LH6 Cooling Kit. Ну что ж – иногда приходится идти на компромиссы.

Для моих целей необходимы большие скорости передачи данных и ожидаемая продолжительность жизни не менее семи лет. Пространства на диске мне нужно порядка 600 Гб, поэтому взяв запас в несколько сотен гигов, я могу позволить накопителям определённый износ и достичь своей цели.

Хотя система не предназначалась для игр, никогда не повредит установить лучший из возможных GPU, который не расплавит температурные трубки. GPU Cooling Kit позволяет размещать GPU до 75 Вт, тепло с которого по трубкам будет идти к одной из стенок. Это ограничивает выбор платой не выше GTX 1050 Ti, если вы, как я, предпочитаете карты от Nvidia.

Мне хотелось MSI GeForce GTX 1050 Ti Aero ITX OC 4GB, но они закончились у моего продавца. Из-за безумств с криптовалютами не было известно, как скоро они появятся на складе, поэтому я удовлетворился второй по списку картой, ASUS Phoenix GeForce GTX 1050 Ti 4GB:

Обе эти карточки вмещаются в корпус, однако MSI на несколько сантиметров короче, чем Asus. Конечно, ни один из двойных вентиляторов у GPU никогда бы туда не влез.

Удалив вентиляторы, радиатор и корпус, я почистил GPU, добавил свежей пасты, а потом приладил GPU Cooling Kit:

Последний шаг – добавить радиаторы на каждый из четырёх чипов VRAM:

Тестирование потребления карточек 1050 Ti показывает, что под нагрузкой они и правда отъедают 75 Вт целиком, поэтому я достигаю пределов GPU Cooling Kit, и никакого разгона не предполагается.

Для питания всего этого я поставил Streacom ZF240 Fanless 240W ZeroFlex PSU:

Я изучил потребление всех компонентов и обнаружил, что у всех шин, за исключением шины в 12 В, запас довольно большой. Шина 12 В, теоретически, может дойти до 85% загрузки в 168 Вт, если CPU и GPU одновременно будут работать на 100%. Обычно я предпочитаю оставлять запас побольше, но поскольку система не предназначена для игр, а других вариантов, в которых я бы занял оба процессора одновременно, я не вижу, меня это не сильно волнует. Если это станет проблемой, я легко смогу установить БП SFX и добавить запаса.

С годами я стал осознавать важность кривых эффективности блоков питания и понял, что стоящая без дела система с крупным БП — это огромные траты энергии. Чтобы извлечь максимальную выгоду из вашего БП, его типичное использование должно находиться в рамках 25-75%%. Рейтинг эффективности ZF240 находится на уровне 93%, и я думаю, что мой выбор компонентов позволит ему регулярно достигать этого уровня – учитывая то, как, я думаю, будет использоваться компьютер.

Низкое энергопотребление особенно важно, если вы планируете работать в местах, где нет постоянного энергоснабжения.

Итоговые замечания


Погоня за тишиной может влететь в копеечку, и данный проект стал именно таким – в итоге он обошёлся почти в 3000 австралийских долларов. Если бы майнеры не взвинтили цены на оборудование, можно было бы уложиться в 2400 – всё равно много, но не так больно. Тем не менее, это меньше, чем три предыдущих собранных мною системы, а новый компьютер способен на то, что им не удавалось – обеспечить полную тишину.

Компьютер не шумит при старте. Он не шумит при выключении. Он не шумит при простое. Не шумит при большой загрузке. Не шумит при чтении и записи. Его не услышишь в обычной комнате днём. Его не услышишь в абсолютно тихом доме ночью. Его не услышишь с одного метра. Его не услышишь с одного сантиметра. Его просто не слышно. Чтобы достичь такого эффекта, потребовалось 30 лет, и, наконец, я его достиг. Путешествие закончено, и это здорово.

Если вы пытаетесь собрать беззвучный – не просто тихий, а бесшумный компьютер, я крайне рекомендую корпус с пассивным охлаждением, тепловые трубки и твердотельные накопители. Устраните все движущиеся части (вентиляторы и жёсткие диски), и вы устраните шум – это не так сложно. И это не обязательно будет очень дорого (мои системные требования не были средними, поэтому не думайте, что все системы на базе DB4 такие дорогие). Тишину (и очень приличный компьютер) можно получить и за половину указанной цены.

Обращаю ваше внимание на то, что это перевод. Ссылка на оригинал – вверху, под заголовком [прим. перев.]

habr.com

Мой рассказ. Как я делал бесшумный системный блок / Платформа ПК / iXBT Live

И так всем привет, этот рассказ для конкурса «Расскажи о своей технике».

Как то вечером сидя дома за компьютером я вдруг осознал, о как же громко шумит мой системный блок. Это был старый черный короб, без боковых стенок, для лучшего охлаждения, intel core i5 и маленький оранжевый zalman на нем, который крутил достаточно быстро и издавал довольно много шума.

Этот пост участвует в конкурсе постов в блогах iXBT.com! 

И вот я решил, пора что то менять в своей жизни, и тут многие из Вас скажут: «хочешь тишины — купи ноутбук», но я не ищу легких путей, да и ноутбук мне совсем ни к чему. Приблизившись ухом к системному блоку стоящему на полу я определил, первым делом надо бороться с охлаждением процессора. Начитавшись форумов было решено, что для тишины нужны маленькие обороты вентилятора, а по скольку вентилятор крутиться медленно, то нужен большой радиатор. Прошерстив форумы и ассортимент нескольких интернет-магазинов я выбрал самый большой, малооборотистый и в тоже время не дорогой процессорный куллер Thermalright HR-02 Macho, обошелся он мне тогда в 1800р. Что бы вы себе его представили, это большой квадрат в половину автомобильного аккумулятора, его размеры 140x162x129 мм. Вот так он смотрится на материнской плате. 
Забрал тихоню из магазина, установил, и понял что надо менять корпус системника, ибо радиатор охлаждения торчал сбоку за габаритами системного блока сантиметра на 2-3 так как высота его 16см, и закрыть боковую крышку не представляется возможным. Я засел за выбор бесшумного корпуса, чтение форумов и поиск по интернет-магазинам дали результаты, был выбран корпус Zalman Z11 Plus за 2400р, в виду того что сбоку у него окошечко, кулер должен был 100% уместиться. Очередной поход в магазин закончился тем, что я принес домой огромную коробку, в которой лежал «Дарт Вейдер», ведь именно так называют этот корпус из-за расширенных вентиляционных отверстий.
 Собрав всё воедино и нажав кнопку включения я был крайне расстроен, я получил шумящего как серверная стойка монстра. Многие скажут что я преувеличиваю, но нет, корпусные вентиляторы Zalman издавали просто нереально много шума, кто когда либо был в серверных комнатах, смогут представить шум. Отключив все корпусные вентиляторы я наконец то понял к чему надо стремиться. Решив не оставлять системный блок  «без дыхания» и заменить корпусные шумящие Zalman'ы на что то совсем тихое, на этот раз я знал чего я хочу и в какую сторону смотреть, выбор упал на Noctua NF-S12A ULN, которые в то время стояли по 550р и планку регулятора оборотов вентиляторов Zalman C1 Plus за 900р, и еще два маленьких вентилятора по 150р для блока питания, гулять так гулять. 
 
Купил, собрал, включил, и понял что да, именно этого я добивался. Неделю ничего не предвещало беды, но в один из вечеров я понял, что системный блок гудит, а гудеть кроме как жесткому диску больше было не чему. Подняв системный блок на руки гудение прекратилось, но не могу же я постоянно держать его на руках! Я решил что дело в месте контакта корпуса и пола, то есть в пластмассовых ножках, под низ был положен тонкий слой поролона, но результата это не дало, я стал экспериментировать с креплением жесткого диска, эксперименты тоже не дали результата, гул продолжался и действовал на нервы. В голову мне пришла идея, вибрирует что? Правильно корпус! Пошел в магазин автозвука и купил два листа вибропласта, это такая фольга с толстым слоем пластилина на ней, её используют для шумоизоляции автомобилей. Обклеив вибропластом стенки корпуса изнутри, я включил компьютер, гул остался, всё впустую.
 
Было решено идти до конца ведь уже потрачено не мало сил, времени и денег. Последним шагом к вечернему комфорту было покупка SSD жесткого диска, три года назад, да в прочем как и сейчас такие диски стоили дорого, а памяти на них не очень много, значит надо брать два диска, один SSD для быстрой загрузки и работы системы, а второй малооборотистый и значит бесшумный HDD. В очередной раз посетив «красный с буквой U» интернет-магазин, были куплены SSD Kingston KC300 120гб за 3700р и WD Green 5200 за 1000р. Сходил, купил, установил, включил, и о да, наконец то, месяц борьбы с шумом дал результат, системный блок работает чуть громче чем ноутбук и слышен только ночью в тишине или во время игр когда вентиляторы работают на полную. Вот так я сделал себе бесшумный системный блок, спасибо всем кто дочитал до конца. 

www.ixbt.com

Выбираем малошумный корпус для ПК (страница 5)

Antec P100

Американская компания Antec – одна из старейших на рынке. В ассортименте ее корпусов выделяется линейка Performance One – в нее входят качественные малошумные корпуса с шумоизоляционным материалом. Серия обновилась в 2014 году наиболее интересной для рядового пользователя моделью P100.

Корпус получился симпатичным, он выполнен в формате Midi Tower, поддерживает материнские платы форм-фактора ATX, семь накопителей и два 5.25-дюймовых устройства.

Звукопоглощающий материал присутствует изнутри фронтальной дверцы, на обеих боковинах, а также на верхней панели. Но шумоизоляция у этого корпуса не на битумной основе, а напоминает жесткий поролон.

Верхняя панель изначально закрыта съемными заглушками, при необходимости здесь можно разместить два 140/120 мм вентилятора или 280/240 мм радиатор СЖО (толщиной ~7 мм без учета вентиляторов). Фронтальная панель поддерживает аналогичные вентиляторы и оборудована быстросъемным противопылевым фильтром. Имеется двухскоростной переключатель оборотов вентилятора. Собственно, Antec P100 – хороший и не слишком дорогой корпус, его стоимость составляет примерно $90.

С техническими характеристиками Antec P100 можно ознакомиться в таблице ниже.
Название моделиAntec P100
Тип конструкцииMidi Tower
Габариты корпуса
(Ш х В х Г), мм
220 x 484 x 523
Масса корпуса (нетто), кг7.3
Материал корпусаСталь / Пластик
Цветовая вариацияBlack
Вн

overclockers.ru

Бесшумный персональный компьютер — Википедия

Тихий персональный компьютер — это полностью бесшумный или малошумящий компьютер. Такие компьютеры используются как в профессиональной деятельности (работа со звуком или видео), так и для личного использования (музыкальные центры, офисные компьютеры), особенно людьми, которых раздражает шум. Обычно в таких системах вентилятор полностью отсутствует.

Вентиляторы[править | править код]

Большинство современных компьютеров требует активного охлаждения, для которого обычно используются вентиляторы. Вентиляторы, как правило, ставятся на блок питания, процессор и на большинство современных дискретных видеокарт. Шум от вентиляторов может усиливаться по мере нагрева охлаждаемых элементов или менять частоту в процессе резонанса между частотами издаваемого звука нескольких вентиляторов.

Шум вентилятора состоит из нескольких составляющих:

  • Шум подшипников
  • Аэродинамический шум

Жёсткие диски[править | править код]

Шум жёстких дисков является наиболее трудноустраняемой составляющей шума. В настоящее время самый верный метод — перевод операционной системы на SSD и использование жёстких дисков для всего остального. Помимо уменьшения шума системы в целом, это ускоряет работу операционной системы из-за малого времени доступа к многочисленным мелким файлам, а также снижает нагрузку на жёсткие диски, так как нагрузка на архивные разделы хранения данных в десятки раз меньше, чем на системные. В случае нахождения операционной системы в одном из разделов поделённого жёсткого диска (типичная ситуация прошлых лет) имеется значительно больший риск потери данных, находящихся вне операционной системы на том же физическом носителе вследствие повышенной нагрузки на него.

Оптические приводы[править | править код]

Так как в большинстве случаев использования компьютера оптический привод не является постоянно работающим устройством, особых мер для снижения шумности привода не принимается. Но на студиях звукозаписи применяют физические выключатели питания приводов и используют программы, подобные Nero Drivespeed, для замедления скорости вращения шпинделя CD/DVD-привода.

Для уменьшения шума могут быть приняты следующие меры:

Вентиляторы[править | править код]

Вентилятор диаметром 120 мм с переменной частотой вращения

Крепление вентиляторов на вибропоглощающих шайбах или вибропоглощающих прокладках позволяет снизить передачу вибрации на корпус.

Уменьшение напряжения на вентиляторах — эффективный и дешёвый метод снижения их шума. На разъёмах определённых конструкций это делается простой установкой в свободные контакты резисторов. Современные материнские платы также допускают регулирование скорости вращения через BIOS или программные утилиты. Следует заметить, что увлекаться замедлением вентиляторов стоит при наличии опыта, и при этом нужно тщательно контролировать температуру многих внутренних узлов: жёсткого диска, микросхем чипсета и полевых транзисторов, расположенных около процессора, особенно, когда они не имеют радиаторов. Регулировать скорость вращения можно путём использования специального импульсного контроллера. Если для управления не использовать сигнала с тахометра или датчика температуры, то из-за трения вследствие накопившейся в нём пыли или из-за износа подшипников частота вращения будет падать, возможно, до полной его остановки.

Уменьшение скорости вращения вентиляторов позволяет снизить шум от вентилятора, когда от него не требуется максимальной производительности. Управление может осуществляться вручную, например, с помощью регулятора частоты вращения или автоматически, с использованием дополнительных устройств или возможностей материнской платы компьютера. В последнем случае могут использоваться как встроенные функции BIOS’а, так и дополнительные программы при наличии соответствующего API.

Основным недостатком большинства систем управления вентиляторами, встроенных в BIOS, является отсутствие возможности полного отключения вентиляторов, когда температура не превышает заданного уровня. Поэтому в компьютерах, которые используют в студиях звукозаписи, устанавливают отдельные контроллеры. Например, контроллер «SCYTHE kaze server» управляет вентиляторами на основании значений температуры на отдельных датчиках для каждого вентилятора и позволяет полностью отключать вентиляторы.[1][2]

Существует несколько типов подшипников, используемых в компьютерных вентиляторах:

  • подшипник скольжения — характеризуется средним уровнем шума, но имеет низкий срок службы до 30 000 часов. Самый дешёвый тип подшипника.
  • подшипник качения — характеризуется средним уровнем шума, имеет большой срок службы 50 000—100 000 часов.
  • гидродинамический подшипник — характеризуется низким уровнем шума и большим сроком службы - до 150 000 часов. Один из самых экзотических типов, встречается в вентиляторах фирм Noctua, Sony и в некоторых моделях фирм Scythe и Glacial Tech. При его преимуществах отличается самой высокой ценой.
  • магнитный подшипник — характеризуется отсутствием подшипникового узла как такового, по заявлению производителя Sunon — «трение есть только о воздух».[3]

Блок питания[править | править код]

На шум блока питания влияют несколько факторов: вентилятор и его контроллер, управляющий скоростью, КПД всего устройства, площадь теплообменников, сопротивление проходящему потоку воздуха.

Методы снижения шума:

  • Использование тихих вентиляторов
  • Установка безвентиляторного блока питания. Такие блоки обладают меньшей мощностью и большим КПД.[4]
  • Обеспечение свободного доступа холодного воздуха к блоку питания. Такое обеспечивается в корпусах с нижним расположением блока питания и сегментированных корпусах, в отличие от типичных конструкций, где воздух нагревается внутри корпуса, приобретая иногда температуру 50 и выше градусов Цельсия — и только затем выдувается через блок питания. Подобный режим перегрева блока питания (в совокупности с большим количеством годами не убираемой пыли в нём) приводит к раннему выходу его из строя, к выходу из строя части комплектующих вместе с ним (и потере данных на носителях информации), а иногда и к пожарам.

Процессор[править | править код]

Большой медный радиатор и высокоскоростной вентилятор образуют мощную систему охлаждения (СО) для Pentium 4 Northwood

Уровень шума значительно снижается при использовании охлаждающих модулей с тихими вентиляторами или вообще без них. Алюминиевые и особенно более дорогостоящие медные лучше справляются с рассеиванием тепла, Кроме типа материала не меньшее значение имеет площадь радиатора. Это означает, как правило, что более крупные охлаждающие модули имеют более высокую эффективность.

Применение теплопроводящих трубок, объединяющих СО процессора и чипсета и отводящих тепло от них, ещё более улучшает этот параметр (в последнее время подобная система стала широко использоваться в большом количестве потребительских настольных систем). В студиях звукозаписи используют безвентиляторные радиаторы с элементами Пельтье.[5]

Для уменьшения тепловыделения процессоров применяют следующие методы:

  • Снижение напряжения питания на процессоре. Многие современные ЦПУ способны стабильно работать в таких условиях на своей обычной и даже на повышенной частоте, при этом выделяя меньше тепла.
  • Снижение тактовой частоты процессора. Этот метод не столь эффективен и снижает быстродействие.

Варьирование частоты и напряжения питания также может быть использовано и в графических картах и у чипсетов.

Жёсткие диски[править | править код]

Силиконовые шайбы для крепления жёстких дисков. Уменьшают вибрацию и шум.

Уровень шума, который производит механика накопителя при его работе, указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Радикальное решение для полного устранения шума от жёстких дисков — использование SSD-накопителей. Такие накопители обладают большей скоростью доступа, меньшим энергопотреблением, не содержат движущихся частей и теоретически обладают бо́льшей надёжностью. При этом они совершенно бесшумны. В данный момент покупка твердотельного накопителя объёмом 120—128 гигабайт только под современную операционную систему (Windows 7, 8, 8.1, современные сборки на базе Linux) экономически оправдана; документы же хранить на SSD нецелесообразно, за исключением проектов, редактируемых программным обеспечением, требующим высокой скоростной нагрузки на носитель информации. К тому же, они обладают определённым ограничением на количество обращений к каждому чипу памяти, после чего данные перестают читаться и записываться (в отличие от жёсткого диска, который редко отказывает целиком). Тем не менее, существуют карты с повышенным числом обращений к данным, и отказы легко заметить на ранних стадиях.

Как правило, хорошие результаты даёт замена жёстких дисков на диски форм-фактора 2,5", которые применяются в ноутбуках. Диски размером в 2,5 дюйма создают меньше вибрации и шума и потребляют меньше электроэнергии, но имеют меньшую ёмкость и скорость, и большую удельную стоимость данных. Существуют также тихие диски стандартного форм-фактора 3,5".

Для снижения шума от жёстких дисков применяют следующие методы:

  • Программный, с помощью настройки, встроенной в большинство современных дисков, системы AAM. Переключение жёсткого диска в тихий режим приводит к снижению производительности в среднем на 5-25 %, но делает шум при работе практически неслышным.
  • Использование шумопоглощающих устройств[6], закрепления дисков на резиновых или силиконовых шайбах или даже полная замена крепления на гибкую подвеску.

Официально возможность программного управления акустическим шумом жёсткого диска — AAM появилась в стандарте ATA/ATAPI-6, хотя некоторые производители делали экспериментальные реализации и в более младших версиях этого стандарта. Согласно стандарту, управление осуществляется путём изменения значения в диапазоне от 128 до 254, что позволяет регулировать шум, производительность, температуру, потребление электроэнергии и срок эксплуатации жёсткого диска. Практически в любом современном жёстком диске можно включить/выключить тихий режим с помощью утилит MHDD или Victoria. В операционной системе Linux это можно сделать с помощью утилиты hdparm.

Также применяется настройка жёстких дисков на снижение скорости вращения (вплоть до полной остановки вращения шпинделя) в случае бездействия. Хотя это может уменьшить их срок действия и мешать работе операционной системы, всё же такой приём может быть полезным для дисков, содержащих лишь данные пользователя (не содержащие ОС).

Системный блок[править | править код]

Корпус Antec P180, поделённый на отсеки для лучшего охлаждения компонентов

Внутренняя часть корпуса может быть выстлана звукопоглощающим материалом, например пенопластом или волокнистыми материалами. Это даёт следующие преимущества:

  • смягчение вибрации;
  • уменьшение амплитуды вибрации за счёт увеличения массы корпуса;
  • поглощения шума, создаваемого воздушными потоками.

Некоторые корпусы высокого класса имеют такую шумоизоляцию изначально. Выпускаются также специальные звукопоглощающие маты, которыми можно обклеить любой корпус. Такая доработка может уменьшать дрожание корпуса и поглощать верхние звуковые частоты. Также отмечаются случаи уменьшения шума в некоторых корпусах с большим количеством отверстий.

Системный блок нельзя ставить в шкаф или располагать вплотную к мебели.

Улучшение аэродинамических характеристик[править | править код]

Определённое значение имеют также решётки, через которые воздух попадает внутрь корпуса. Они не должны препятствовать потоку воздуха или создавать завихрения. В «тихих» корпусах применяют ячеистые решётки или ещё более эффективные «проволочные», которые гораздо лучше устаревших штампованных. Такие корпусы, к тому же, поставляются с уже тихими вентиляторами и источниками питания.

  • Продуманная установка направляющих перегородок или воздуховодов и закрывание неподходящих отверстий корпуса могут существенно улучшить охлаждение компьютера, а следовательно, уменьшить обороты или количество вентиляторов. Существуют корпусы с изначально хорошо продуманной схемой воздушных потоков.
  • Закрепление и упорядочение кабелей внутри корпуса, если они блокируют поток воздуха. Например, можно переместить их из центра корпуса ближе к стенкам.
  • Замена штатных защитных решёток вентиляторов на проволочные позволяет снизить турбулентные завихрения воздуха и производимый шум.

Жидкостное охлаждение[править | править код]

Жидкостное охлаждение бывает оптимизированным либо для максимально тихой работы, либо для максимального охлаждения, но не одновременно. Из-за наличия вентилятора и насоса такие системы могут быть намного более шумными, чем традиционное охлаждение, но недавние технологические успехи позволили им быть одновременно и эффективными, и тихими. Тем не менее, такой вид охлаждения требует бо́льших знаний и бо́льших затрат, и, несмотря на последние технологические достижения, не решает проблему шумоподавления. Кроме того, использование подобных устройств сопряжено с повышенной опасностью: неизбежные через несколько лет протечки могут привести к отказу системы от перегрева, а повышенная влажность внутри корпуса может привести к конденсату, и, в результате, или отказу оборудования или даже к короткому замыканию/пожароопасности. Из тихих популярны системы Zalman Reserator, однако самостоятельно собранная пользователем конструкция может быть ничем не хуже, и лишь ненамного громче. Из-за своей сложности, сомнительной эффективности и высокой цены такие системы охлаждения не распространены среди обычных пользователей и больше являются увлечением для энтузиастов.

Масляное охлаждение[править | править код]

Производятся суперкомпьютеры с масляным охлаждением (в том числе компанией Intel), когда греющиеся компоненты помещаются в масляную среду целиком (машинное масло является диэлектриком), однако о массовом применения данной технологии в промышленных масштабах пока говорить не приходится, применение же данных методов охлаждения в домашних условиях сопряжено с технологическими, эстетическими и практическими трудностями.

Материнские платы[править | править код]

На современные материнские платы устанавливают, как правило, электронные контроллеры вентиляторов. Избыточное тепло выделяется на них микросхемами «северного моста». Для его охлаждения устанавливается небольшой, но шумный вентилятор, например, как в чипсете nForce4. Некоторые производители вместо этого используют большие пассивные рассеиватели тепла, что избавляет от шума, но требует хорошего охлаждения пространства внутри корпуса.

Пыль[править | править код]

Пыль плохо проводит тепло и тормозит воздушный поток, препятствуя охлаждению. При очистке следует помнить о возможности пробоя электростатическим зарядом, поэтому не следует использовать для этого пылесос. Помимо этого — пылесос не способен создать разрежение, достаточное для удаления пыли с объекта, имеющего сложный и высокий рельеф, на примере тех же комплектующих компьютера, и потому чистка направленным воздушным потоком вне жилых помещений — вариант более эффективный. Очистку производят резиновой грушей или щёткой, а также воздушным компрессором и сжатым воздухом. Стоит проводить эту операцию приблизительно раз в 4-6 месяцев.

Перемещение компьютера в соседнее звукоизолированное помещение (комнату)[править | править код]

Современные цифровые интерфейсы для устройств ввода-вывода (HDMI-, DVI-, USB-кабели) позволяют отдалить системный блок, как наиболее шумящий компонент, на расстояние до 5-15 метров (в отдельных случаях до 30), без потери качества изображения, воспроизводимого звука или снижения чувствительности клавиатуры или мыши. Это позволяет переместить сам компьютер в соседнее, нерабочее или нежилое помещение, пропустив все необходимые кабели в специально просверленное сквозное отверстие в стене, с опциональной звукоизоляцией стен этого отдельного помещения. Шум, производимый компьютером в соседнем помещении, обычно уже не оказывает никакого влияния на звукозаписывающую аппаратуру или слуховой аппарат человека, находящихся в основном (рабочем или жилом) помещении, так как железобетонные или кирпичные конструкции межкомнатных перекрытий являются хорошим звукоизолятором, намного более эффективным, чем, к примеру, поролоновые вставки на стенки системного корпуса.

Данный подход в большинстве случаев позволяет и вовсе обойтись без специализированных компьютерных комплектующих с пониженной генерацией шума, обычно не достаточно эффективных в части шумоподавления, к тому же обладающих пониженной производительностью.

Сопутствующей проблемой в этом подходе, тем не менее, остаётся вопрос генерации шума встроенными блоками питания в мониторах и периферийных устройствах, остающихся в основных помещениях (если устройство не имеет внешнего блока питания, который также можно перенести в соседнее помещение), а также остаточный шум, производимый внутренними компонентами самих периферийных устройств (магнитными катушками, дросселями, некачественными конденсаторами и т. п.), в том числе фоновый шум, создаваемый звуковоспроизводящей аппаратурой: акустические колонки, находящиеся под напряжением от усилителя, создают шум даже при отсутствии воспроизведения аудиоматериала (что не является существенной проблемой в общем случае, так как качественные звуковые усилители способны автоматически прекращать подачу напряжения на колонки в случае отсутствия воспроизведения звука в течение определённого времени).

Мониторы[править | править код]

Помимо того, что шум могут создавать блоки питания мониторов, сами LCD-мониторы имеют тенденцию производить остаточный шум (гул) при условиях максимальной яркости. Как частное решение данной проблемы обычно помогает понижение яркости до минимально комфортной величины, однако стоит отметить потерю цветопередачи в данном случае. Проблема гула мониторов проявляет себя в условиях идеально звукоизолированной комнаты, в условиях же типовой городской квартиры или офиса шум, производимый на улице, многократно перекрывает данный эффект и делает его практически незаметным.

Принтер[править | править код]

Принтер, как и любое нечасто используемое периферийное устройство, можно переместить в отдельное, специально оборудованное помещение (как и сам системный блок).

Тихими являются многие из компьютеров Apple Inc. В частности, не выпускаемая более модель G4 Cube содержала минимум движущихся частей и становилась очень тихой после замены стандартного жёсткого диска на более новый тихий.

Можно считать тихими ПК, выпущенные компанией Dell, если сравнивать со стандартными моделями, но самодельные тихие компьютеры легко их опережают.

Отдельной темой идут безвентиляторные неттопы без движущихся частей. Как правило, они содержат в себе модуль flash-памяти или SSD-диск, к примеру, LXBOX. Наличие жёсткого диска внутри требуют в большинстве случаев активного охлаждения.

Компания Zalman предлагала своё решение для тихого компьютера — корпусы серии TNN (totally no noise), сняты с производства в 2005 году по неизвестным причинам. Скорее всего — по финансовым и пространственным: немного людей готовы были платить 1500 долларов за большой и тяжёлый, чистым весом в 26 кг, корпус, предназначенный для сборки компьютера с производительностью ниже средней. С помощью тепловых трубок тепло отводилось к боковым стенкам корпуса, которые за счёт своего размера и конструкции могли эффективно рассеивать тепло в окружающую среду. Это позволяло сделать систему охлаждения впечатляюще эффективной и полностью бесшумной.[7]

Имеются также и отечественные разработки абсолютно бесшумных компьютеров. Бесшумность достигнута благодаря использованию новейших процессоров с низким тепловыделением в сочетании с пассивным (безвентиляторным) кулером, применению SSD и бесшумного блока питания.

ru.wikipedia.org

Абсолютно бесшумный, компактный безвентиляторный компьютер на полноценном десктопном процессоре. DIY реализация

Так как выбранный блок питания по форме/размерам весьма далёк от ATX, выбрать готовый компактный корпус, способный вместить процессорный кулер паспортной высотой 152мм — не получилось. Ну и славно, потому что по факту его высота больше. Сел за проектирование.

К лазерной резке вопросов не было — с листогибом получилось сложнее. Наше оборудование может загибать минимальную полку размера «10мм+толщина материала» и строго с радиусом гиба 1,5мм.

Так как планировалась установка жесткого диска, были предприняты меры по борьбе с вибрацией. Координатно-пробивного станка у нас нет, поэтому сформировать развитые рёбра жёсткости в тонком материале нечем. Вспомнив американскую поговорку «Bigger is better», материалом была выбрана оцинкованная сталь толщиной 1,5мм.

Кнопку включения — точёную алюминиевую, ножки — тоже. В ножки — антивибрационные силиконовые вкладыши. HDD — вертикальное расположение, силиконовые подвесы. (как сделать форму для заливки силикона, не имея фрезерного станка, видно на картинке ниже).

Рёбра кулера — вертикально.

Блок питания — плашмя на заднюю стенку, чтобы тепло передавал на корпус.

Самый интересный вопрос заключался в вентиляционных отверстиях — какие их делать? Из курса физики и вот этой статьи явно следует, что выходное отверстие должно быть больше входного.

Чтобы не резать несколько вариантов верхней и нижней крышки, было решено регулировать соотношение высотой ножек. Цвет — чёрный матовый. Вот так это выглядело на экране:

А вот так в железе:

Злополучный HDD с силиконовыми подвесами. При подключении подвесы полностью убирают вибрацию, но шум остаётся. И если в обычном ПК шум HDD прячется за вентиляторными, то здесь пришлось его отключить.

Материнская плата на кронштейне.

Основная деталь — кожух. Все соединения в изделии выполнены с помощью заклёпок-гаек.

Вот такая компоновка. Блок питания — слева, прикручен к задней стенке и сбрасывает тепло на неё же.

Я не работаю в продажах газировки — баночка тут для масштаба.

И в Эппл не работаю (жаль).

8-дюймовый планшет, бесшумный системник, обычный системник.


habr.com

Размышления про идеальный корпус / Habr

Здравствуйте. На написание этой статьи меня побудил наметившийся апгрейд домашней системы и недавняя статья Настольный. Металлический. Бесшумный. Твой?. Чтобы найти приемлемый вариант мне пришлось перелопатить кучу моделей корпусов и сейчас я хочу поделиться своей болью с вами.

В статье будут описаны типичные проблемы типичных корпусов (с кучей картинок), несколько примеров хороших компоновок и мои пожелания насчет идеального корпуса. Я не буду указывать ссылки на модели корпусов, так как не хочу делать кому-то рекламу или антирекламу.


Типичный компьютерный корпус с точки зрения термодинамики

Чтобы не было вопросов, хочу сразу пояснить, почему я не могу использовать маленький бесшумный компьютер формата типа Intel Nuc или Mac Mini.


Зачем мне нужен компьютер?


  • Интернет (с привычкой открывать 100500 вкладок в браузере)
  • Игры
  • Фильмы и сериалы (использую SVP для поднятия фреймрейта до 60ФПС)
  • Иногда программирование (на работе хватает)
  • Иногда видеомонтаж

То есть мой компьютер должен рассеивать ~500Ватт тепловой мощности (100 процессор, 300 видеокарта, 100 — всё остальное).

Также должен быть SSD под ОСь с программами и место под HDD с файлохранилищем. Для NAS я еще не созрел.


Каким требованиям должен удовлетворять компьютерный корпус?


  • Компактность
  • Хорошее охлаждение компонентов
  • Защита от пыли
  • Лёгкость обслуживания
  • Тишина (по крайней мере без нагрузки)

Какие компоненты самые шумные?


  • "Неправильный" процессорный кулер
  • Видеокарта с турбинкой в качестве системы охлаждения
  • Корпусные вентиляторы — если начинка мощная, то "тихие" варианты вентиляторов просто не будут успевать удалять горячий воздух из системного блока.
  • "Неправильный" блок питания

Если в случае с кулером и блоком питания можно найти тихие варианты, то с видеокартой идеального решения нет. Но об этом чуть позже.

Теперь приведу в пример типичную компоновку корпуса и расскажу, что в ней не так:


  • Видеокарта типа ПЕЧ стоит под процессором с памятью и эффективно их подогревает.
  • Конвекция почти не помогает охлаждать комплектующие.
  • Много пустого места (и, как следствие, слишком большие габариты системного блока).
  • Но при этом воздушный поток от фронтальных вентиляторов перегораживают пустые корзины для жестких дисков.
  • Конкретно эта модель претендует на роль "тихой" и в некоторых местах даже установлены звукопоглощающие пластины, но по факту шум выходит через дырявую заднюю панель корпуса.

Претензии к компонентам

Да, они есть. Классическая компоновка не предполагает компактности размещения, но к этому уже все привыкли.


Видеокарты

Давным давно, когда приняли стандарт ATX и придумали ставшую классической компоновку материнской платы, никто не думал, что в слот AGP (позднее PCI-E) будут ставить самый горячий компонент системы. А потом видеокарты стали наращивать энергопотребление и под процессором расположилась миниатюрная печка.

С этим ничего не поделать, но есть замечание к системе охлаждения. Самый распространенный вариант охлаждения сейчас выглядит так:


Такая система охлаждения по сравнению с турбинкой:


более тихая, обеспечивает более низкую температуру видеокарты и нравится всем обзорщикам. Но есть одно но — она не удаляет горячий воздух из корпуса. Таким образом к шуму от вентиляторов видеокарты прибавляется шум вентиляторов корпуса (на лето мне приходилось ставить дополнительный мощный нагнетающий вентилятор, иначе корпус задыхался).


Материнские платы

Как самый большой компонент системы.

Полноразмерный ATX сейчас редко когда нужен. Обычно в слоты PCI воткнуты только видеокарта и, в редких случаях, звуковая карта. Всё остальное и так встроено в материнскую плату.

Но это легко решается, так как есть форматы mATX и mini-ITX. Но в большинстве корпусов miniITX сложно обеспечить хорошее охлаждение и, как правило, нет слота 3.5" под HDD, так что мой выбор — mATX.


Теперь я хочу разобрать все пункты по порядку и указать на типичные проблемы типичных корпусов.


Вентиляция и защита от пыли

Небольшое лирическое отступление на тему того, как должна быть организована принудительная вентиляция.


Фильтровентиляционная установка автомобильная

На военной технике такие штуки фильтруют воздух и создают избыточное давление, не позволяя загрязняющим веществам попадать внутрь через щели. Тот же принцип используется в операционных, некоторых дата-центрах и при производстве микроэлектроники.

Если применить это к компьютерным корпусам — для создания избыточного давления внутри корпуса должны быть установлены нагнетающие вентиляторы с пылевыми фильтрами. Казалось бы, всё очевидно. Но давайте посмотрим сюда:


Формально всё на месте — 2 нагнетающих вентилятора за пылевым фильтром.


Но тут рядом с вентиляторами видны большие дыры. То есть вместо создания положительного давления внутри корпуса вентиляторы будут мешать воздух около фронтальной панели.

Понятно, что лишние отверстия можно заклеить синей изолентой, но почему сразу не сделать хорошо?

Еще один вариант:


На этот раз месить воздух вокруг себя будет вытяжной вентилятор. И заодно подсасывать пыль, если мощность нагнетающих вентиляторов недостаточна.

А некоторые корпуса просто страдают излишней дырявостью:


Защита от пыли? Какая еще защита от пыли?

И — мое любимое:


Больше вентиляторов богу вентиляторов!

Без комментариев.

Есть и более-менее адекватные варианты:

2 нагнетающих вентилятора с пылевым фильтром, 2 вытяжных вентилятора, лишних дырок (кроме заглушек PCI) нет. Только непонятно, зачем СЖО с видеокарты подогревает поступающий в корпус воздух.

Еще интересно, почему не используют HEPA фильтры на вдув. Сложенный гармошкой самый грубый HEPA фильтр обеспечит меньшее сопротивление воздушному потоку и лучшую фильтрацию, чем любые сеточки. Да, эти фильтры нельзя полностью очистить. Но это же мечта любого производителя — продавать расходники с дикой наценкой! Шутка. А может быть и нет.


Лёгкость обслуживания

В данном контексте всё просто — хочется иметь возможность пропылесосить пылевые фильтры не разбирая корпус.


Также ради лёгкости обслуживания я отметаю СЖО

Жидкостная система охлаждения сделает компьютер значительно дороже и потребует дополнительной возни, иначе в охлаждающей жидкости заведется новая жизнь, непонятная склизкая масса забьет микроканалы и (или) жидкость протечет/испарится.


Я уже высказался по поводу печки под процессором и хочу привести пару примеров, где эта проблема решена.

1) Корпус с материнской платой, повернутой на 90 градусов:

Конвекция и вентиляторы работают вместе. В тестах на эффективность охлаждения этот корпус показывал очень хорошие результаты.

2) Горизонтальное расположение материнской платы

Тут всё понятно — горячий воздух поднимается от процессора и видеокарты наверх. Комплектующие друг друга не греют.

3) Корпуса — перевертыши

Материнская плата повернута на 180 градусов, то есть видеокарта расположена над процессором и больше его не греет.

4) Можно использовать райзер для подключения видеокарты

Так видеокарту можно разместить в дальней от процессора части корпуса и компоненты будут меньше греть друг друга.


Его нет. Но кое-что приблизилось к моим представлениям об идеальной компоновке

Не являюсь поклонником Apple, но Mac Pro мне нравится. Есть только нагнетающие вентиляторы и в потоке воздуха от них установлены радиаторы компонентов.

Кто-то краудфандингом собирает деньги на клон этого корпуса, но самую главную фишку — проточные радиаторы,- они реализовать не смогут.


В итоге получится как с фальшивыми ёлочными игрушками — выглядят как настоящие, но радости (охлаждения) не приносят.


Не хотелось бы заканчивать статью на грустной ноте, поэтому расскажу о вариантах решения проблемы:


  • Поместить корпус туда, где его не слышно

    Без комментариев. Длинный кабель к монитору и USB хаб позволят вынести системный блок хоть на балкон. Или в домашнюю серверную. Заодно это частично решит проблему с пылью. Другое дело, что такой возможностью стоит озаботиться еще на этапе ремонта.


  • Выбрать из имеющихся вариантов

    Если поискать, всё-таки можно найти корпус с приличной пылеизоляцией. На звукоизоляцию надеяться не надо, так что выбираем самые тихие компоненты. С большим количеством пустого места внутри тоже придется смириться.


Для себя я выбрал mATX корпус с горизонтальным расположением материнской платы.


  • Сделай сам

    Можно обойтись без корпуса и повесить все комплектующие на стену. Разумеется тут так-же надо выбирать тихие варианты охлаждения видеокарты и процессора. Если повесить материнскую плату разъёмами вниз, то компоненты не будут греть друг друга, а конвекция будет помогать охлаждению. Проблема с пылью останется, но на открытом стенде все на виду и легко почистить.


Я так не сделал из-за лени и наличия любопытного кота.


  • Мелкосерийное производство

    Тут всё тоже можно сделать самому, но я не нашел, где можно достать подходящий термосифон.


Есть такая штука:

Гуглится по словам "алюминиевый профиль радиаторный".

Используется для охлаждения систем освещения на основе светодиодов, стоит недорого. Ширина (которую мне удалось найти) до 30 сантиметров. Толщина основания от 6 миллиметров. В некоторых случаях его можно заказать уже анодированным.

И этот радиаторный профиль можно использовать в качестве стенки корпуса.

Через термосифон:

… устанавливаем материнскую плату с процессором.

Снимаем штатную систему охлаждения с видеокарты и при помощи райзера через термосифон крепим её к тому же радиатору. Вы великолепны! На самом деле — не совсем. Меня смущает, что контакт термосифона и радиаторного профиля может оказаться недостаточным. Само собой, тут тоже надо использовать термопасту, но хватит ли этого?

В дополнение можно установить снизу несколько вентиляторов, которые будут помогать при нагрузке.

По моим прикидкам, радиаторного профиля 30 на 30см со слабым обдувом должно хватить на 300 Ватт тепловой мощности от процессора и видеокарты.

На этом всё, надеюсь, эта статья кому-нибудь поможет.


PS

Если кто-то знает, как найти готовый термосифон — напишите, пожалуйста, в личку или в комментарии.


PPS

Спасибо evilme за статью Учимся писать на Хабр. Так писать намного удобнее чем в web-редакторе или Word'е с последующим переносом на хабр. От себя добавлю, что рекомендую поставить расширение "Russian — Code Spell Checker" для борьбы с неизбежными очепятками.


PPPS

Уже после публикации я пересмотрел статью Самый умный обогреватель и узнал на фото тот самый "алюминиевый профиль радиаторный", который я нашел в процессе работы над статьей. И да, всё уже изобретено до нас, а моя "новаторская идея" (это сарказм), оказывается, уже реализована в железе. Только без видеокарты.

habr.com


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.