I7 4820k характеристики


Процессор Intel® Core™ i7-4820K (10 МБ кэш-памяти, тактовая частота до 3,90 ГГц) Спецификации продукции

Дата выпуска

Дата выпуска продукта.

Литография

Литография указывает на полупроводниковую технологию, используемую для производства интегрированных наборов микросхем и отчет показывается в нанометре (нм), что указывает на размер функций, встроенных в полупроводник.

Количество ядер

Количество ядер - это термин аппаратного обеспечения, описывающий число независимых центральных модулей обработки в одном вычислительном компоненте (кристалл).

Количество потоков

Поток или поток выполнения - это термин программного обеспечения, обозначающий базовую упорядоченную последовательность инструкций, которые могут быть переданы или обработаны одним ядром ЦП.

Базовая тактовая частота процессора

Базовая частота процессора — это скорость открытия/закрытия транзисторов процессора. Базовая частота процессора является рабочей точкой, где задается расчетная мощность (TDP). Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Максимальная тактовая частота с технологией Turbo Boost

Максимальная тактовая частота в режиме Turbo — это максимальная тактовая частота одноядерного процессора, которую можно достичь с помощью поддерживаемых им технологий Intel® Turbo Boost и Intel® Thermal Velocity Boost. Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Кэш-память

Кэш-память процессора - это область быстродействующей памяти, расположенная в процессоре. Интеллектуальная кэш-память Intel® Smart Cache указывает на архитектуру, которая позволяет всем ядрам совместно динамически использовать доступ к кэшу последнего уровня.

Частота системной шины

Шина — это подсистема, передающая данные между компонентами компьютера или между компьютерами. В качестве примера можно назвать системную шину (FSB), по которой происходит обмен данными между процессором и блоком контроллеров памяти; интерфейс DMI, который представляет собой соединение "точка-точка" между встроенным контроллером памяти Intel и блоком контроллеров ввода/вывода Intel на системной плате; и интерфейс Quick Path Interconnect (QPI), соединяющий процессор и интегрированный контроллер памяти.

Расчетная мощность

Расчетная тепловая мощность (TDP) указывает на среднее значение производительности в ваттах, когда мощность процессора рассеивается (при работе с базовой частотой, когда все ядра задействованы) в условиях сложной нагрузки, определенной Intel. Ознакомьтесь с требованиями к системам терморегуляции, представленными в техническом описании.

Доступные варианты для встраиваемых систем

Доступные варианты для встраиваемых систем указывают на продукты, обеспечивающие продленную возможность приобретения для интеллектуальных систем и встроенных решений. Спецификация продукции и условия использования представлены в отчете Production Release Qualification (PRQ). Обратитесь к представителю Intel для получения подробной информации.

Поиск продукции с Доступные варианты для встраиваемых систем

Макс. объем памяти (зависит от типа памяти)

Макс. объем памяти означает максимальный объем памяти, поддерживаемый процессором.

Типы памяти

Процессоры Intel® поддерживают четыре разных типа памяти: одноканальная, двухканальная, трехканальная и Flex.

Макс. число каналов памяти

От количества каналов памяти зависит пропускная способность приложений.

Макс. пропускная способность памяти

Макс. пропускная способность памяти означает максимальную скорость, с которой данные могут быть считаны из памяти или сохранены в памяти процессором (в ГБ/с).

Поддержка памяти ECC

Поддержка памяти ECC указывает на поддержку процессором памяти с кодом коррекции ошибок. Память ECC представляет собой такой типа памяти, который поддерживает выявление и исправление распространенных типов внутренних повреждений памяти. Обратите внимание, что поддержка памяти ECC требует поддержки и процессора, и набора микросхем.

Поиск продукции с Поддержка памяти ECC

Встроенная в процессор графическая система

Графическая система процессора представляет собой интегрированную в процессор схему обработки графических данных, которая формирует работу функций видеосистемы, вычислительных процессов, мультимедиа и отображения информации. Системы HD-графики Intel®, Iris™ Graphics, Iris Plus Graphics и Iris Pro Graphics обеспечивают расширенное преобразование медиа-данных, высокие частоты кадров и возможность демонстрации видео в формате 4K Ultra HD (UHD). Для получения дополнительной информации см. страницу Технология Intel® Graphics.

Редакция PCI Express

Редакция PCI Express - это версия, поддерживаемая процессором. PCIe (Peripheral Component Interconnect Express) представляет собой стандарт высокоскоростной последовательной шины расширения для компьютеров для подключения к нему аппаратных устройств. Различные версии PCI Express поддерживают различные скорости передачи данных.

Макс. кол-во каналов PCI Express

Полоса PCI Express (PCIe) состоит из двух дифференциальных сигнальных пар для получения и передачи данных, а также является базовым элементом шины PCIe. Количество полос PCI Express — это общее число полос, которое поддерживается процессором.

Поддерживаемые разъемы

Разъемом называется компонент, которые обеспечивает механические и электрические соединения между процессором и материнской платой.

TCASE

Критическая температура - это максимальная температура, допустимая в интегрированном теплораспределителе (IHS) процессора.

Технология Intel® Turbo Boost

Технология Intel® Turbo Boost динамически увеличивает частоту процессора до необходимого уровня, используя разницу между номинальным и максимальным значениями параметров температуры и энергопотребления, что позволяет увеличить эффективность энергопотребления или при необходимости «разогнать» процессор.

Технология Intel® Hyper-Threading

Intel® Hyper-Threading Technology (Intel® HT Technology) обеспечивает два потока обработки для каждого физического ядра. Многопоточные приложения могут выполнять больше задач параллельно, что значительно ускоряет выполнение работы.

Поиск продукции с Технология Intel® Hyper-Threading

Технология виртуализации Intel® (VT-x)

Технология Intel® Virtualization для направленного ввода/вывода (VT-x) позволяет одной аппаратной платформе функционировать в качестве нескольких «виртуальных» платформ. Технология улучшает возможности управления, снижая время простоев и поддерживая продуктивность работы за счет выделения отдельных разделов для вычислительных операций.

Поиск продукции с Технология виртуализации Intel® (VT-x)

Технология виртуализации Intel® для направленного ввода/вывода (VT-d)

Технология Intel® Virtualization Technology для направленного ввода/вывода дополняет поддержку виртуализации в процессорах на базе архитектуры IA-32 (VT-x) и в процессорах Itanium® (VT-i) функциями виртуализации устройств ввода/вывода. Технология Intel® Virtualization для направленного ввода/вывода помогает пользователям увеличить безопасность и надежность систем, а также повысить производительность устройств ввода/вывода в виртуальных средах.

Поиск продукции с Технология виртуализации Intel® для направленного ввода/вывода (VT-d)

Intel® VT-x с таблицами Extended Page Tables (EPT)

Intel® VT-x с технологией Extended Page Tables, известной также как технология Second Level Address Translation (SLAT), обеспечивает ускорение работы виртуализованных приложений с интенсивным использованием памяти. Технология Extended Page Tables на платформах с поддержкой технологии виртуализации Intel® сокращает непроизводительные затраты памяти и энергопотребления и увеличивает время автономной работы благодаря аппаратной оптимизации управления таблицей переадресации страниц.

Архитектура Intel® 64

Архитектура Intel® 64 в сочетании с соответствующим программным обеспечением поддерживает работу 64-разрядных приложений на серверах, рабочих станциях, настольных ПК и ноутбуках.¹ Архитектура Intel® 64 обеспечивает повышение производительности, за счет чего вычислительные системы могут использовать более 4 ГБ виртуальной и физической памяти.

Поиск продукции с Архитектура Intel® 64

Набор команд

Набор команд содержит базовые команды и инструкции, которые микропроцессор понимает и может выполнять. Показанное значение указывает, с каким набором команд Intel совместим данный процессор.

Расширения набора команд

Расширения набора команд - это дополнительные инструкции, с помощью которых можно повысить производительность при выполнении операций с несколькими объектами данных. К ним относятся SSE (Поддержка расширений SIMD) и AVX (Векторные расширения).

Состояния простоя

Режим состояния простоя (или C-состояния) используется для энергосбережения, когда процессор бездействует. C0 означает рабочее состояние, то есть ЦПУ в данный момент выполняет полезную работу. C1 — это первое состояние бездействия, С2 — второе состояние бездействия и т.д. Чем выше численный показатель С-состояния, тем больше действий по энергосбережению выполняет программа.

Enhanced Intel SpeedStep® Technology (Усовершенствованная технология Intel SpeedStep®)

Усовершенствованная технология Intel SpeedStep® позволяет обеспечить высокую производительность, а также соответствие требованиям мобильных систем к энергосбережению. Стандартная технология Intel SpeedStep® позволяет переключать уровень напряжения и частоты в зависимости от нагрузки на процессор. Усовершенствованная технология Intel SpeedStep® построена на той же архитектуре и использует такие стратегии разработки, как разделение изменений напряжения и частоты, а также распределение и восстановление тактового сигнала.

Технология Intel® Demand Based Switching

Intel® Demand Based Switching — это технология управления питанием, в которой прикладное напряжение и тактовая частота микропроцессора удерживаются на минимальном необходимом уровне, пока не потребуется увеличение вычислительной мощности. Эта технология была представлена на серверном рынке под названием Intel SpeedStep®.

Поиск продукции с Технология Intel® Demand Based Switching

Технологии термоконтроля

Технологии термоконтроля защищают корпус процессора и систему от сбоя в результате перегрева с помощью нескольких функций управления температурным режимом. Внутрикристаллический цифровой термодатчик температуры (Digital Thermal Sensor - DTS) определяет температуру ядра, а функции управления температурным режимом при необходимости снижают энергопотребление корпусом процессора, тем самым уменьшая температуру, для обеспечения работы в пределах нормальных эксплуатационных характеристик.

Технология защиты конфиденциальности Intel®

Технология защиты конфиденциальности Intel® — встроенная технология безопасности, основанная на использовании токенов. Эта технология предоставляет простые и надежные средства контроля доступа к коммерческим и бизнес-данным в режиме онлайн, обеспечивая защиту от угроз безопасности и мошенничества. Технология защиты конфиденциальности Intel® использует аппаратные механизмы аутентификации ПК на веб-сайтах, в банковских системах и сетевых службах, подтверждая уникальность данного ПК, защищает от несанкционированного доступа и предотвращает атаки с использованием вредоносного ПО. Технология защиты конфиденциальности Intel® может использоваться в качестве ключевого компонента решений двухфакторной аутентификации, предназначенных для защиты информации на веб-сайтах и контроля доступа в бизнес-приложения.

Технология Intel® Smart Response

Технология Intel® Smart Response сочетает высокую производительность небольших твердотельных накопителей с большими объемами жестких дисков.

Новые команды Intel® AES

Команды Intel® AES-NI (Intel® AES New Instructions) представляют собой набор команд, позволяющий быстро и безопасно обеспечить шифрование и расшифровку данных. Команды AES-NI могут применяться для решения широкого спектра криптографических задач, например, в приложениях, обеспечивающих групповое шифрование, расшифровку, аутентификацию, генерацию случайных чисел и аутентифицированное шифрование.

Поиск продукции с Новые команды Intel® AES

Технология Intel® Trusted Execution

Технология Intel® Trusted Execution расширяет возможности безопасного исполнения команд посредством аппаратного расширения возможностей процессоров и наборов микросхем Intel®. Эта технология обеспечивает для платформ цифрового офиса такие функции защиты, как измеряемый запуск приложений и защищенное выполнение команд. Это достигается за счет создания среды, где приложения выполняются изолированно от других приложений системы.

Поиск продукции с Технология Intel® Trusted Execution

ark.intel.com

Intel Core i7-4820K

Intel Core i7-4820K - 4-ядерный процессор с тактовой частотой 3700 MHz и кэшем 3-го уровня 10240 KB. Процессор предназначен для настольных компьютеров, разъем - LGA2011. Имеет встроенный контроллер оперативной памяти (4 канала, DDR3-1333, DDR3-1600, DDR3-1866) и контроллер PCI Express 3.0 (количество линий - 40).
Основная информация:
Год выхода2013
Сегментдля настольных компьютеров
SocketLGA2011
Шина5 GT/s DMI
Количество ядер4
Количество потоков8
Базовая частота3700 MHz
Turbo Boost3900 MHz
Разблокированный множительда
Архитектура (ядро)Ivy Bridge-E
Техпроцесс22 nm
Транзисторов, млн1860
TDP130 W
Макс. температура66,8° C
Официальные спецификацииперейти >
Внутренняя память
Кэш L1, КБ4x32 + 4x32
Кэш L2, КБ256x4
Кэш L3, КБ10240
Встроенные модули
Графический процессорнет
Контроллер оперативной памяти4-канальный
(DDR3-1333, DDR3-1600, DDR3-1866)
Контроллер PCIePCI Express 3.0 (40 линий)
Другие модули / перифериянет
Инструкции, технологии
• MMX
• SSE
• SSE2
• SSE3
• SSSE3
• SSE4 (SSE4.1 + SSE4.2)
• AES (Advanced Encryption Standard inst.)
• AVX (Advanced Vector Extensions)
• F16C (16-bit Floating-Point conversion)
• EM64T (Intel 64)
• NX (XD, Execute disable bit)
• VT-x (Virtualization technology)
• VT-d (Virtualization for directed I/O)
• Hyper-Threading
• Turbo Boost 2.0
• Enhanced SpeedStep tech.

www.chaynikam.info

Процессоры Intel Core i7-4790K, 4820K, 4960X, 5820K и 5960X

Много ядер за пределами четырех: плюсы и минусы

Компанию Intel последние лет пять-семь принято ругать за то, что, дескать, оставшись на рынке практически без конкурентов, она занялась торможением прогресса — народ, мол, жаждет дешевых многоядерных процессоров, а их нет. Зато «никому не нужное» графическое ядро постоянно улучшают и в размерах увеличивают, так что оно уже больше половины процессора занимает — вот вместо этого бы ядер как раз. Понятно, что такой подход сильно упрощен и скособочен в сторону примитивного мирка т. н. «компьютерных энтузиастов» (благо другие пользователи особо своих мнений и не высказывают, воспринимая компьютер как совершенно обычный бытовой прибор), где дискретные видеокарты бороздят Большой театр, а производительность является самостоятельным фетишем, за который есть готовность платить вполне конкретные деньги.

Массовый же рынок давно живет по совершенно иным законам, главные из которых — цена, простота и компактность (благо портативные компьютеры давно уже перестали быть игрушками, а в нишевый товар превратились традиционные модульные десктопы). Поэтому, очевидно, интегрированное видео лучше дискретного во всех случаях, когда оно справляется со своими обязанностями, а если при этом за $100 долларов можно купить процессор с видео, то это намного лучше, чем платить $75 за процессор и столько же за видеокарту. При этом немаловажно и то, что большинство продаваемых в составе готовых устройств процессоров являются двухъядерными — не считают нужным покупатели доплачивать даже за четыре ядра, поскольку не так уж велика от них польза в массовом ПО — а тогда зачем им шесть или восемь?

Впрочем, нельзя сказать, что Intel совсем не учитывает нужды особо требовательных пользователей. Тем более, что это ей особо ничего не стоит — на серверном рынке наращивание количества ядер является вполне оправданным, так что дошли уже и до 18. Правда, по ценам, которые вряд ли понравятся частному лицу :) Но и последним есть что предложить. В конце концов, еще шесть лет назад вопрос выбора количества ядер вообще особо не стоял: первые двухъядерные процессоры появились в середине 2005 года, а четырехъядерные — в конце 2006-го, и на этом прогресс остановился на три года. Первый же шестиядерный процессор был представлен в начале 2010 года, а в середине 2011-го появились первые шестиядерные модели с неэкстремальной ценой. Такое положение дел стабилизировалось... на те же три года, что характерно: в конце прошлого процессор «за штукубаксов» обзавелся восемью ядрами, а шесть — в очередной раз подешевели в очередные полтора раза. Откуда претензии? Просто когда-то четырехъядерные модели дешевели чуть быстрее :) Неэкстремальный Core 2 Quad вышел через квартал после экстремального — а шестиядерным моделям Core i7 на это потребовалось два квартала. Еще через несколько месяцев самый дешевый Core 2 Quad начал продаваться дешевле 300 долларов — а у шестиядерных Core i7 до сих пор это еще впереди, поскольку они пока «просели» лишь до $400. Так что вот тут — точно замедление. Но, повторимся, большинство покупателей до сих пор не видит смысла даже в четырех ядрах, да и вообще: если под «много» понимать хотя бы «два», то история многоядерности по длительности — это менее трети всей истории х86 :)

В общем, такое вот шаткое равновесие. Тем не менее, процессоры выпускаются, и их цены снижаются. Соответственно, есть смысл оценить, насколько могут быть оправданы затраты на приобретение «High End Desktop Processors» (так официально именуется группа устройств под обе версии LGA2011) по сравнению с покупкой топового решения для массовой платформы. Чем мы сегодня и займемся.

Конфигурация тестовых стендов

Процессор Intel Core i7-4790KIntel Core i7-4820KIntel Core i7-4960XIntel Core i7-5820KIntel Core i7-5960X
Название ядра HaswellIvy Bridge-EIvy Bridge-EHaswell-EHaswell-E
Технология пр-ва 22 нм22 нм22 нм22 нм22 нм
Частота ядра, ГГц 4,0/4,43,7/3,93,6/4,03,3/3,63,0/3,5
Кол-во ядер/потоков4/84/86/126/128/16
Кэш L1 (сумм.), I/D, КБ128/128128/128192/192192/192256/256
Кэш L2, КБ4×2564×2566×2566×2568×256
Кэш L3, МиБ810151520
Оперативная память 2×DDR3-16004×DDR3-18664×DDR3-18664×DDR4-21334×DDR4-2133
TDP, Вт88130130140140
ЦенаT-10820114T-10531106T-10531094T-11008379T-11008382

Процессоров сегодня будет пять: старшая модель для LGA1150 и по паре старший/младший для LGA2011 и LGA2011-3. Если подойти к вопросу по-другому, то четырехъядерных процессоров два, шестиядерных — тоже два, и еще один восьмиядерный. «Бюджетное» решение для LGA2011 в лице 4820К, кстати, формально даже дешевле, чем 4790К, но на практике может обойтись и дороже — видеокарту для него придется покупать обязательно. Однако если ее покупка все равно планируется, то у этого решения есть не только минусы (ниже частоты, более старая архитектура), но и плюсы (больше линий PCIe, возможность использовать без проблем большее количество памяти), почему мы и решили добавить его к сравнению.

Хотя наиболее интересной парой у нас сегодня будут 5820К и 4960Х: оба шестиядерные, но первый современнее и намного дешевле. Правда, тактовые частоты низкие, однако платформа позволяет с легкостью «исправить» эту несправедливость :) А 5960Х нам нужен как для сравнения с предшественником на троне, так и сам по себе: все-таки это формально самое мощное решение в ассортименте Intel.

Что касается прочих условий тестирования, то они были равными, но не одинаковыми: частота работы оперативной памяти была максимальной поддерживаемой по спецификациям, а ее емкость в 4 ГБ на канал, естественно, ставит 4790К в изначально менее удобные условия, поскольку в итоге ему досталось суммарно всего 8 ГБ, а не 16, как остальным испытуемым. Однако мы сочли это более правильным, чем пытаться уравнять объемы — в конце концов, многие приобретают решения на базе LGA2011 именно для установки большего количества памяти. А вот системный накопитель (Toshiba THNSNh356GMCT емкостью 256 ГБ) и видеокарта (на базе Radeon R7 260X) были одинаковыми для всех испытуемых.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков iXBT Application Benchmark 2015 и iXBT Game Benchmark 2015. Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

Процессор Intel Core i5-3317U
Чипсет Intel HM77 Express
Память4 ГБ DDR3-1600 (двухканальный режим)
Графическая подсистемаIntel HD Graphics 4000
НакопительSSD 128 ГБ Crucial M4-CT128M4SSD1
Операционная системаWindows 8 (64-бит)
Версия видеодрайвера графического ядра Intel9.18.10.3186

iXBT Application Benchmark 2015

Пожалуй, самая лучшая для демонстрации преимуществ многопоточности диаграмма, поскольку эти приложения используют столько ядер процессора, сколько найдут. В итоге убедительная победа 5960Х — 4790К он обогнал в полтора раза. Стоит, правда, раза в три больше, но это дело обычное: зависимость цены и производительности далеко не линейная. Оба шестиядерника между ними, причем примерно равны — с учетом разных цен это весьма немаловажно. 4820К же явный аутсайдер — у него все параметры хуже, чем у 4790К :)

Что называется — приехали. Как такое может быть? Вспоминаем про особенности многопоточного теста в Adobe After Effects CC 2014.1.1: для его нормальной работы рекомендуется иметь как минимум 2 ГБ на каждый поток вычисления — в противном случае тест может «выпасть» в однопоточный режим и начать работать еще медленнее, чем без задействования технологии Multiprocessing (как ее называет Adobe). Иногда, как мы уже выяснили, хватает и 1 ГБ на поток (т. е. 8 ГБ для Core i7), но не при использовании дискретной видеокарты. А вот 16 ГБ вполне хватает для 4820К (восемь потоков), но маловато для шестиядерных процессоров... и смерти подобно для восьмиядерного Core i7-5960X. Как это выглядит на практике — посмотрим подробно в таблице:

Intel Core i7-4790KIntel Core i7-4820KIntel Core i7-4960XIntel Core i7-5820KIntel Core i7-5960X
Test #1, секунды 633767581612536
Test #2, секунды 6273378279501162

Итак, без использования Multiprocessing все логично и предсказуемо: дополнительные ядра дают прирост производительности, но небольшой, поскольку в этом режиме данного приложения низковата степень их утилизации. Включение Multiprocessing более чем вдвое подстегивает 4820К, которому памяти хватает, но катастрофически сказывается в остальных случаях. У 4790К производительность просто оказывается такой же, как без этой технологии, шестиядерники замедляются в полтора раза, а восьмиядерный 5960Х — вообще в два. Относительно «обычного» режима — как мы уже знаем при установке 32 ГБ памяти процессор справляется с этим заданием за 268 секунд (и то — если взглянуть на производительность 4820К, можно прийти к выводу, что 5960Х 32 ГБ еще недостаточно для полноценного использования упомянутой технологии). А при наличии всего 16 — работает в четыре раза медленнее. Что примечательно, первый тест в Adobe After Effects CC 2014.1.1 при меньшем объеме памяти выполняется напротив на 10 секунд быстрее. Вывод? Ступая на зыбкую почву рабочих станций и прочих узкоспециализированных конфигураций следует помнить, что не все там так уж просто. Одними ядрами сыт не будешь — и окружение необходимо использовать соответствующее. И режимы работы используемого ПО (когда есть выбор) — согласованные с окружением. Иначе вместо ускорения работы вдвое можно получить и ее замедление. А изучая и сравнивая результаты тестирований на разных сайтах следует начинать с изучения тестовой методики (те ресурсы, где она расписана недостаточно детально, лучше вообще не рассматривать по понятным причинам :)) — иначе есть риск сравнить теплое с мягким.

В рамках экстремальных платформ — красивая лесенка, которую сильно портит результат Core i7-4790K: более высокий, чем у всех. Но к этому мы были вполне готовы изначально — слишком много ядер тут не нужно, так что победит тот, у кого и архитектура лучшая, и тактовые частоты высокие.

Избиение младенцев-переростков :) По известной давно причине — по сути приложение со времен Core 2 Duo никто не переделывал, так что нужны всего два ядра, причем максимальной частоты.

Audition дополнительные потоки использовать пытается, но это может разве что компенсировать отставание по другим параметрам, но не более того.

Зато здесь именно увеличение количества ядер является определяющим фактором. И (что характерно) 5820К и 4960Х примерно равны — второй раз уже и снова в условиях, благоприятных для шестиядерных процессоров.

Дополнительные ядра неплохо трудятся при сжатии данных, но вот для распаковки нужно одно максимальной частоты — в итоге и получаем равенство топов для всех трех платформ и отставание от них младших моделей процессоров.

Как мы уже говорили, «в быту» такого типа хватит и одного быстрого ядра. У кого самое быстрое ядро — тот самый быстрый. У кого ядра медленнее — тот и медленнее. А сколько тех ядер — неважно.

SSD один и тот же, контроллеры платформ примерно равны — общее равенство с небольшим разбросом.

С учетом всего вышенаписанного, средняя температура по больнице казалось бы имеет еще меньше смысла, чем обычно, однако в целом хорошо показывается что в общем и целом сферическому пользователю в вакууме LGA2011 в обеих инкарнациях просто не нужна.

Игровые приложения

По понятным причинам, при использовании Radeon R7 260X мы ограничиваемся только режимом минимального качества (для максимальных настроек этой видеокарты самой по себе недостаточно), но в полном разрешении Full HD (с этим-то она, в отличие от многих интегрированных решений, отлично справляется). комментарий к диаграммам будет один на всех.

Единственный сильно выбивающийся из общего ряда результат — в Grid2. Как видим, движок игры не просто поддерживает многоядерные процессоры — он и до 16 потоков вычисления точно может с пользой утилизовать. Однако смысла в этом нет, поскольку разницы между 200 и 300 кадров в секунду на деле нет. Формально есть, а на практике — и первого значения слишком много. А чем ниже частота кадров (в первую очередь зависящая от возможностей видеокарты), тем меньше разница между процессорами даже там, где она пытается проявиться: в Hitman например много ядер на первый взгляд не повредит, а если приглядеться — лучше эти деньги на более мощную видеокарту потратить, что позволит играть не на минимальных настройках. В общем, геймеру точно стоит ограничиться LGA1150, причем даже не Core i7 :)

Итого

Во-первых, как уже было сказано выше, шесть-восемь ядер на десктопе по-прежнему не нужны массовому пользователю. Из этого не следует, что они не нужны никому, но плясать придется-таки от задач. И оценивать: окупится или нет? Причем снижение цен на процессоры, вообще говоря, ничего не изменит — система все равно будет дороже. Почему? Вспоминаем о необходимости видеокарты. Да, геймеры все равно используют дискретные GPU, но геймерам, строго говоря, Core i7 вообще не нужны. А если рассматривать профессиональное использование с соответствующей видеокартой профессиональной серии, то вопрос, 300 или 1000 долларов стоит процессор, может вообще перестать иметь значение — поскольку такая видеокарта способна потянуть на несколько тысяч. Опять же, в рамках LGA1150 есть и Xeon с графическими ядрами серии HDG P4600 и выше, способными конкурировать как раз с бюджетными профессиональными картами, а «бюджетность» в этом сегменте специфическая: в $50, короче, никак не уложиться :) Да и на прочем окружении экономить тоже не стоит: пример Adobe After Effects CC 2014.1.1, для адекватной работы всех функций которого систему с шести- или восьмиядерным процессором придется комплектовать 32 ГБ памяти, выше разобран подробно. Кстати с учетом этого фактора Core i7-5820K перестает выглядеть столь уж привлекательно: за 32 ГБ DDR4 сейчас придется отдать почти 600 долларов, а такой же объем DDR3 обойдется менее чем в 300, так что дешевле будет купить «устаревший» Core i7-4930K под «обычную» LGA2011 ;)

В общем, как и было сказано, дорогое это нынче удовольствие — системы на многоядерных процессорах, и останется оно дорогим даже при снижении цен на сами процессоры. Но это еще полбеды — хуже то, что для решения большинства стоящих перед массовым пользователем задач шесть-восемь ядер просто не нужны. Строго говоря, и четыре-то не всегда нужны, но там и цены на процессоры различаются слабее, а остальная «инфраструктура» и вовсе идентичная — в отличие от. Соответственно, четырехъядерные процессоры постепенно превращаются в массовый продукт по крайней мере в сегменте настольных компьютеров (на мобильном рынке пока большинство отгрузок приходится не на них), а вот дальше... Дальше еще есть объективные трудности, изучением которых мы, фактически, сегодня и занимались.

www.ixbt.com

Процессоры Intel (i7-4930K, i7-4820K ,i7-4770K )сравнение.[перевод] | Периферия | Обзоры

В то время как многие энтузиасты в восторге от новой архитектуры 12-thread IVB , лишь немногие готовы заплатить $ 1000 за эту привилегию. Видите ли, i7-4960X ужасно дорог и предлагает минимальные улучшения производительности по сравнению с более доступным Haswell i7-4770K в некоторых ключевых областях. Но Intel не выпускает только один процессор.I7-4930K и i7-4820K предлагают сходные цены, которые в пределах досягаемости современных экономных пользователей. Направление корпорации Intel с Ivy Bridge-E представляет особый интерес, и это всегда вызывало большие споры. В то время как сами процессоры представляют скромные улучшения по сравнению с предыдущей продукции Sandy Bridge-E и построены на новой платформе. Пользователи значительно устаревших платформ наверняка оценят его набор функций, но по сравнению с предыдущей платформой, разница не велика.

В попытке смягчить цены, связанный с покупкой новой платформой ( а не только процессором) X79,младшие модели Intel IVB-E по цене более конкурентоспособны, чем их мощный собрат. I7-4930K буквально копия в $ 1000 Разница в более низких частотах (основная частота / Turbo) и немного меньше кэш-памяти L3. Даже с этими изменениями, он по-прежнему сохраняет TDP 130 Вт и относительно высокую тактовую частоту. Этот последний пункт особенно важен для потенциальных покупателей, так как i7-4930K стоит почти на $ 450 меньше. i7-4820K является текущим любимцем Ivy Bridge-E линейке Intel. В то время как i7-3820 обладал множителем 45X, новый процессор имеет максимальный множитель 63x. Ультра высокие частоты теперь не будут требовать изменения частоты шины. Он также может похвастаться самым высоким в Base Clock на 3.7GHz, но цена явно завышена.

Естественно, будет много различий между 4820K и i7-4770K. Их цена отличается в пределах $ 10 друг от друга, но i7-4820K имеет преимущество в своей базовой частоте, обладает большим количество кэша и изначально поддерживает память 1866MHz.

Для этого обзора, мы подготовили целый ряд различных испытаний. Насколько это возможно,системы имеют одинаковые компоненты, тайминги памяти, драйвера и т.д. Помимо ручного выбора частоты памяти и таймингов, каждый вариант в BIOS был сброшен на умолчание.

• UAC – Отключено

• Indexing – Disabled

• Superfetch – Отключено

• System Protection/Restore – Отключено

• Problem & Error Reporting – Отключено

• Remote Desktop/Assistance - Отключено

• Windows Security Center Alerts – Отключено

• Windows Defender – Отключено

• Screensaver – Отключено

• План питания – Высокая производительность

• V-Sync – Выключено

В этом разделе, тесты испытывают центральный процессор и систему в целом . Большинство из этих тестов легко приобрести или скачать, так что любой, читая эту статью можно легко повторить наши тесты на своей собственной системе.

AIDA64 Extreme Edition

AIDA64 использует набор тестов, чтобы определить общую производительность.Он быстро стал одним из стандартов среди конечных пользователей. Мы использовали его для общего тестирования процессора (CPU ZLib / CPU Hash) и плавающей запятой с ориентирами (FPU VP8 / FPU SinJulia).

ZLib Benchmark

Тест сочетающий тестирование процессора и оперативной памяти . Тест CPU ZLib использует только базовые инструкции x86, но, тем не менее хорошо показывает общую производительность системы.

CPU Hash Benchmark

Этот тест меры производительности процессора с SHA1 алгоритмом хэширования. Еще важно то,что он использует MMX, MMX + / SSE, SSE2, SSSE3, AVX наборы инструкций.

FPU VP8 / SinJulia Benchmarks

FPU VP8 измеряет эффективность сжатия видео, используя Google VP8 (WebM) видеокодек Версия 0.9.5 и блок с плавающей точкой. Тест кодирует (1280x720 разрешение) видео кадры при битрейте 8192 кбит с лучшими настройками качества.

CineBench r11.5 64-bit

Тест от MAXON, Cinebench R11.5 использует всю мощь обработки вашей системы для визуализации фотореалистичных 3D-сцены, используя различные алгоритмы,задействует все доступные ядра процессора. Результат приведен в пунктах (PTS). Чем выше число, тем быстрее ваш процессор.

Civilization V: Gods & Kings Unit Benchmark

PCMark 7

WPrime

7-Zip

MediaCoder x64

Adobe Photoshop CS6

POV Ray 3.7 RC6

TrueCrypt 7.1

x264HD Benchmark

3DMark11

3DMark06

Наши ожидания подтвердились. 4930K и 4820K на технологии Intel, 22 нм, они значительно более эффективны, чем их предшественники в то же время требует меньше энергии, чем 4960X.

Для того чтобы проверить температуру, мы используем Test Prime95 в течение 25 минут и XTU 4,2 утилиту Intel. Температура окружающей среды 24 ° С Для охлаждения использовался Noctua NH-U14S с двумя 140 мм вентиляторами.

Haswell i7-4770K мы разогнали до 4.5GHz,а 4960X до 4.55GHz . На предыдущих архитектурах мы видели большие цифры 4,8GHz и 5,0GHz. В случае Intel 4960X, только один из десяти образцов возьмет частоту выше 4.7GHz. Среди процессоров Haswell, один из пятнадцати возьмёт частоту 4.75GHz.

Начав с i7-4820K, мы были достаточно удивлены и рады видеть стабильную частоту 4.84GHz на всех четырех ядерах / восьми потоках.

4930K тоже показал приличные результаты , но частота составила 4.65GHz

С начала продаж, новая платформа получила долю негативных отзывов. Для многих цена была слишком высока, и у платформы не хватало убедительных аргументов для перехода.4960X будут использоваться в узком кругу, в основном из за его цены.Тем не менее,процессоры будут востребованы.

club.dns-shop.ru


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.