Как поднять напряжение на процессоре


Как увеличить напряжение питания у Slot-1 процессоров

Авторы статьи не несет отвественности за любой вред, нанесенный компьютеру вследствие применения описанных здесь действий.

По мере развития интеловской платформы от 486 процессоров до Pentium II мы постепенно потеряли возможность вручную выставлять коэффициент умножения, затем напряжение процессора, а теперь все идет к тому, чтобы оградить нас и от выставления частоты шины. Таким образом, монополист на рынке — Intel борется с теми, кто хочет сэкономить свои деньги и не покупать самый мощный процессор, потратив на него заоблачные суммы, а разогнать более дешевый продукт.

Мы же, как пользователи, пытаемся обмануть Intel и уже можем отказаться от автоматического определения частоты шины, заклеивая контакт B21 процессора Pentium II или купив "правильную" материнскую плату. Как поменять жестко зашитый коэффициент умножения, пока не понятно, хотя многие умы давно ломают голову над этой проблемой. Третий пункт нашей антиинтеловской программы — это напряжение питания процессора. Его, тоже оказывается можно поменять вручную, в обход автоопределения.

Зачем это нужно? Ответ прост. Вспомним любимые игрушки оверклокеров — материнские платы ABIT. Все они имеют SoftMenu, которое позволяет увеличить напряжение питания ядра процессора на 10-15%. Если воспользоваться этой возможностью, то разогнать процессор удается чуть побольше — факт. Правда, увеличивая напряжение, мы должны отдавать себе отчет в том, что от этого сокращается ресурс процессора, но чаще не настолько, чтобы этот аргумент мог повлиять на желание выжать несколько десятков лишних мегагерц.

Перейдем к теории. Стандартный процессор, вставляемый в Slot1 сообщает материнской плате о своем питании пятью выводами, именуемыми VID0(Voltage ID0)-VID4. Подавая на них питание, плата смотрит, через какие контакты проходит ток и по логическому состоянию этих выводов принимает решение о подаваемом напряжении питания. Расположение выводов VID на разъеме SEC следующее:

ВыводVID0VID1VID2VID3VID4
КонтактB120A120A119B119A121

Теперь приведем таблицу сигналов VID и соответствующих им напряжений:

VID4VID3VID2VID1VID0Напряжение ядра процессора
011111.30
011101.35
011011.40
011001.45
010111.50
010101.55
010011.60
010001.65
001111.70
001101.75
001011.80
001001.85
000111.90
000101.95
000012.00
000002.05
111102.10
111012.20
111002.30
110112.40
110102.50
110012.60
110002.70
101112.80
101102.90
101013.00
101003.10
100113.20
100103.30
100013.40
100003.50

Реально доступным является только блокирование (заклеивание скотчем или замазывание лаком) необходимых выводов (аналогично B21). Этим достигается перевод вывода в единичное состояние. Естественно, таким образом ограничиваются доступные комбинации. Например, в случае процессоров, питающихся от 2.8 В, то есть Intel Pentium II 233, 266, 300 переставить напряжение таким образом к сожалению нельзя. Зато, для процессоров, требующих напряжения 2 В, то есть Intel Pentium II 333, 350, 400, 450 и Intel Celeron 266, 300, 300A, 333, можно получить весьма большой выбор напряжений питания: 1.8 В, 1.9 В, 2.2 В, 2.4 В, 2.6 В. Ниже приводится таблица возможных напряжений двухвольтовых процессоров, которые можно получить изолированием выводов:

Изолируемые контактыПолучаемое напряжение, B
A121B119A119A120B120
   + 1.9
  +  1.8
+    3.4
+  + 3.2
+ +  3.0
+ ++ 2.8
++   2.6
++ + 2.4
+++  2.2

Перевод вывода в нулевое состояние, в принципе, возможен тоже. Для этого его необходимо замкнуть на массу, то есть на один из контактов A2, A6, A10, A14, A18, A22, A26, A30, A34, A38, A42, A46, A50, A54, A58, A62, A66, A70, A74, A78, A82, A86, A90, A94, A98, A102, A106, A110, A114 или на А118. Правда, практически это выполнить достаточно трудно.

Важно не забывать, что повышение питания приводит к существенному увеличению рассеиваемой мощности. Например, при питании 2,6 В потребляемая мощность возрастает, примерно в 1.7 раза по отношению к 2 В. Если не принять серьезных мер по охлаждению процессора, то повышение его температуры в сочетании с увеличением внутренних токов может привести к разрушению его ядра. Кроме того, необходимо контролировать само питание процессора, так как возможны ошибки при заклейке выводов приводящие к напряжениям типа 3.4 В. Хотя такое напряжение может и не привести к мгновенному выходу из строя дорогостоящего оборудования, но через пару минут перегрев может довершить дело.

Поэтому, оптимальными для повышения напряжения являются системные платы с термоконтролем и контролем напряжений питания. В этом случае необходимо сразу после включения проверить в BIOS Setup правильность напряжения. Кроме того, при повышении питания более чем на 10% необходимо хорошо продуманное дополнительное охлаждение процессора.

Практически, изменение напряжения питания в небольших пределах часто позволяет добиться стабильной работы процессора. То есть, если Celeron в принципе работает на, допустим, 400 МГц, но иногда происходят сбои, то изменение напряжения питания на 0,1–0,2 В с большой вероятностью приведет к стабильной работе. Причем, к этому вполне может привести также и понижение напряжения. Повышение напряжения до 2,4 — 2,6 В у двухвольтовых процессоров может привести к устойчивой работе на "следующей" частоте.

Используйте приведенные здесь сведения, только если Вы полностью отдаете себе отчет, на что Вы идете

www.ixbt.com

Десять мифов о разгоне компьютера, про которые пора забыть

Желание получить большее за те же деньги свойственно всем людям, и в компьютерной области оно трансформировалось в разгон: зачастую вы можете купить более слабый процессор, видеокарту или ОЗУ, и, увеличив их частоту, достигнуть уровня производительности более дорогих решений. И, разумеется, этот процесс не мог не обрасти мифами и легендами — о них сегодня мы и поговорим.

Миф №1. Разгон всегда приводит к увеличению температуры.

Собственно, это кажется логичным: раз тот же процессор стал работать быстрее, то энергия для этого не могла получиться из воздуха, а, значит, он должен начать сильнее греться. Однако на практике частота — параметр чисто программный: достаточно вспомнить те же технологии Intel Speed Shift или SpeedStep, которые управляют частотой процессора и могут, к примеру, опускать ее до уровня ниже 1 ГГц в простое. 


Процессор может работать в широком диапазоне частот: например, в данном случае в простое он снижает ее до 800-1000 МГц, так что частота — это чисто программный параметр.

Но почему тогда разгон связывают с повышенным нагревом? Все просто — чем выше частоту вы хотите получить, чем выше для этого должно быть напряжение на полупроводниковом кристалле, а чем выше напряжение — тем сильнее нагрев. Однако стоит учитывать, что напряжение производитель подбирает так, чтобы даже не самые качественные кристаллы могли стабильно работать на максимальной официальной частоте. Поэтому всегда есть почти 100% шанс того, что ваш CPU или GPU сможет стабильно работать на большей частоте при том же напряжения — то есть вы получите более высокую производительность без увеличения температуры.

За примерами такого разгона далеко ходить не нужно: вы не сможете увеличить напряжение на GPU в подавляющем большинстве современных видеокарт (если вы не говорим про модифицированные Video BIOS конечно же, но это приводит к потере гарантии), но при этом зачастую можно увеличить его частоту (а заодно и частоту видеопамяти) на сотню-другую мегагерц, что может принести вам 10-15% производительности при той же температуре в нагрузке.

Миф №2. Разгон — это очень сложная процедура.

Этот миф действительно имел место быть в 90-ых годах, когда разгон осуществлялся перестановкой джамперов на плате, или в нулевых, когда BIOS имели далеко не user friendly интерфейс с минимумом подсказок. Однако сейчас разгон стал проще и доступнее: так, Intel выпустила утилиту Performance Maximizer, которая автоматически разгонит ваш процессор до оптимальной частоты (работает она, правда, пока только с 9-ым поколением Intel Core, но в будущем список процессоров будет увеличиваться). Nvidia выпустила схожий инструмент OC Scanner, который проделывает все тоже самое с их видеокартами двух последних поколений. И даже ОЗУ уже давно выходит с зашитыми XMP-профилями с более высокой частотой.

Так что разгон в современном мире в прямом смысле того слова стал однокнопочным — достаточно установить подходящую утилиту и нажать на кнопку Start, дальше все произойдет само. Но даже если для вашего «железа» таких приложений нет — в интернете хватает подробных мануалов, а современные графические BIOS имеют множество подсказок и будут всеми силами сигнализировать вам, если какие-либо значения оказываются опасными. К тому же современные процессоры имеют множество встроенных защит, так что «спалить» их достаточно сложно.

Миф №3. Почти все ноутбуки не разгоняются.

Почти — потому что есть небольшое количество дорогих моделей, где стоят процессоры Intel с индексом HK, что позволяет их разогнать (полный аналог десктопных процессоров с индексом K). Все другие модели имеют CPU с заблокированным множителем, так что, казалось бы, это не миф.

Однако следует понимать, что основное ограничение мобильных процессоров — это не максимальная частота, которая зачастую выше 4 ГГц, а достаточно низкий теплопакет в 15-45 Вт, который в разы меньше, чем у аналогичных по частотам десктопных аналогах. Поэтому чаще всего мобильные процессоры как раз «упираются» в него и не достигают максимальной частоты.


Снижение напряжения дает лишние 150-200 МГц частоты, или около 10% — достаточно приятный бонус «из воздуха».

Из этой ситуации есть выход: как я писал выше, зачастую можно повысить частоту при том же напряжении и сохранении стабильности. Но есть и другой вариант — это снижение напряжения при тех же частотах, что опять же может быть вполне стабильно. В случае с мобильными «камнями» зачастую напряжение на снижение не заблокировано, поэтому так называется андервольтинг (undervolting) позволит «запихнуть» процессор в тот же теплопакет с большей частотой — чем не разгон?

Миф №4. При разгоне процессор быстрее деградирует и выходит из строя.

Собственно, с точки зрения физики все верно: чем выше напряжение на кристалле, тем быстрее он будет деградировать и тем самым терять стабильность на выбранной частоте. Но насколько быстрый данный процесс? Увы, в интернете информации по этому поводу маловато, что подчеркивает то, что с этой проблемой сталкивалось очень небольшое число людей. 

Поэтому придется использовать собственные данные: так, разогнанный до 4.7 ГГц Core i5-6400 при напряжении в 1.4 В, которое близко к критическим 1.45 В для 14 нм кристаллов, стабильно проработал чуть больше 2.5 лет при достаточно серьезной ежедневной нагрузке (рендер), и лишь несколько месяцев назад пришлось снизить частоту на 100 МГц из-за начавшихся сбоев в работе, после чего стабильность была возвращена и процессор без проблем работает дальше. С учетом того, что этот CPU вообще не предназначен для разгона, а его родная максимальная частота составляет 3.1 ГГц, можно смело утверждать, что деградация едва ли серьезно повлияет на производительность современного процессора даже спустя несколько лет серьезной нагрузки с близким к экстремальному разгоном.

Миф №5. При разгоне невозможно достичь 100% стабильности.

Возможно, это звучит удивительно, но сам по себе полупроводниковый кристалл не является на 100% стабильным — при любых частотах и напряжениях в нем постоянно происходят различные ошибки в вычислениях, которые процессор пытается самостоятельно определить и исправить, и в подавляющем большинстве случаев ему это удается. Но все же не всегда, поэтому бывают случаи, когда система падает в BSOD при серьезной нагрузке процессора даже на дефолтных настройках.

Что касается разгона, то в общем и целом сложно сразу угадать оптимальные значения частоты и напряжения, и именно поэтому существуют различные стресс-тесты в AIDA64, LynX, OCCT или Prime95, которые специально сильно нагружают CPU в попытке проверить его на стабильность. Разумеется, в рамках данной статьи не имеет смысла вдаваться в подробности тестов и говорить о том, что стабильная работа в играх вообще не означает стабильную работу при вычислительных нагрузках с использованием AVX-инструкций, но на деле практически всегда можно найти те более высокие значения частоты и напряжения, при которых система оказывается достаточно стабильной в нужных задачах.

Миф №6. ОЗУ при разгоне греется, поэтому для нее нужны радиаторы.

Что ж, это кажется логичным — при разгоне оперативной памяти зачастую повышают ее напряжение, что должно приводить к большему нагреву. Давайте посмотрим на деле, насколько это критично: так, знаменитые зеленые плашки Samsung B-die при разгоне до 3200 МГц с напряжением в 1.35 В (это почти что стандартное напряжение для большинства плашек DDR4 с частотами около 3 ГГц) потребляют в стресс-тесте AIDA64 2.5 Вт:

Плашек в системе две, каждая включает в себя по 8 чипов, так что в итоге на каждом чипе рассеивается целых 0.16 Вт. Для примера — мобильные ARM-процессоры потребляют единицы ватт и обходятся без всяких радиаторов, а тут значение аж на порядок меньше. Так что радиаторы на ОЗУ не нужны абсолютно, они — всего лишь элемент декора (и временами попытка скрыть дешевые чипы), так что при выборе оперативной памяти не стоит обращать на них внимания.

Миф №7. Оверклокинг — это один большой обман: я разогнал процессор/видеокарту/ОЗУ и не заметил разницы.

Да, и такое бывает. Следует понимать, что разгон — это не панацея, а приятный бонус, заметить который можно лишь при близкой к максимальной нагрузке разогнанного комплектующего. Поэтому если до разгона система с трудом тянула нужные задачи, то не стоит надеяться, что после него все начнет летать. И, с другой стороны, если ваши задачи никогда существенно не нагружали ПК, то опять же разгон едва ли увеличит производительность.

Миф №8. Обзорщики врут: у меня такой же процессор и его не удалось также сильно разогнать.


Статистика разгона i7-8700K хорошо показывает, что не все процессоры способны «взять» даже 5 ГГц.

Полупроводниковый кристалл — штука сложная, настолько сложная, что временами выход годных процессоров составляет лишь 60-80%. Так что в мире не существует двух одинаковых процессоров, из-за чего разгон превращается в лотерею: у кого-то Ryzen 7 2700X работает на 4.3 ГГц на всех ядрах при 1.35 В, а у кого-то с трудом на 4 ГГц при 1.4 В. Поэтому к разгону нужно подходить индивидуально: вполне возможно, что вам повезет и вы достигните даже лучших результатов, чем видели в обзорах, но следует понимать, что возможна и ровно обратная ситуация.

Миф №9. Разгон зависит только от самого процессора и его охлаждения.

Раньше это действительно было так, но появление 8-ядерных монстров на долгоживущем 14 нм техпроцессе привело к тому, что в разгоне они могут потреблять и 200, и даже 300 Вт. Разумеется, это требует серьезного охлаждения, но современные суперкулеры и СВО вполне могут справиться с таким потоком тепла. 


Вот так греет VRM простой материнской платы на h410 чипсете стоковый i7-8700K. Представить, что будет в разгоне с дешевой платой на Z370, не так уж и сложно. Фото взято с 3Dnews.

Проблема же как обычно приходит оттуда, откуда ее не ждали: перестают справляться с такой нагрузкой цепи питания, временами разогреваясь свыше 100 градусов (некоторые производители даже вентиляторы для их обдува предлагают). Так что уже перестало быть редкостью то, что какой-нибудь Core i7-9700K вполне может разгоняться дальше, но повышение частоты приводит к перегреву цепей питания и троттлингу процессора, дабы они не вышли из строя. Поэтому теперь при выборе процессора под разгон нужно тщательно выбирать еще и материнскую плату.

Миф №10. Оверклокинг — это процедура, требующая определенных дорогостоящих комплектующих.


Разгон возможен даже на такой «затычке», как Nvidia MX150.

Собственно, дорогой разгон — это или экстремальный его подвид с жидким азотом и чиллерами, или же покупка процессоров от Intel с индексом K и плат на Z-чипсетах. В большинстве своем производители скорее за разгон, чем против него: так, оверклокинг возможен на всех, даже мобильных, видеокартах от Nvidia и на большинстве видеокарт от AMD. Любая, даже самая дешевая, память стандарта DDR4 зачастую берет хотя бы 2666, а то и 2933 МГц, а та же Samsung B-die — даже 3200. AMD разрешает разгон практически всех своих процессоров (кроме Athlon) на почти всех платах, кроме основанных на совсем уж простом чипсете A320. Так что в общем и целом почти в каждом ПК, даже офисном, зачастую можно найти хотя бы один компонент, который можно разогнать, так что не стоит считать эту процедуру дорогостоящей.

Как видите, мифов об оверклокинге хватает. Знаете какие-либо еще? Пишите о них в комментариях.

www.iguides.ru

ПОЧЕМУ ПАРАМЕТР LLC ТАК ВАЖЕН ПРИ РАЗГОНЕ

    

Параметр Load-Line Calibration поможет вам в этом!

*Если вы хотите знать больше о разгоне компьютера, а также планируйте сравнивать результаты оверклокинга с использованием как воздушных систем охлаждения, так и охлаждения с использованием жидкого азота на платах MSI Z170, обязательно прочитайте эту статью: https://gaming.msi.com/article/skylake-z170-overclocking-experience-247-air-water-and-sub-zero-cooling-oc-results

Глава 1: Для чего нужна функция LLC? Борьба с просадкой напряжения

До того как появилась функция LLC, при разгоне нам всегда приходилось иметь дело с очень неприятным явлением известным как просадка напряжения или Vdroop. Vdroop- это падение напряжения на процессоре при увеличении нагрузки. Система не состоянии поддерживать стабильное напряжение vCore так необходимое для работы в режиме разгона. При увеличении нагрузки, напряжение на процессоре начинает падать, что часто приводит к появлению сбоев в работе и BSOD (синих экранов). В тот самый момент, когда вы думайте, что нашли идеальные настройки для работы вашей системы в режиме постоянного разгона, просадка напряжения на процессоре может привести к неприятным сюрпризам.

 

    

Давайте рассмотрим такой пример: вы установили напряжение vCore на процессоре равным 1.3В, чтобы достичь стабильного поведения системы на частоте 4500МГц. Система прекрасно себя ведет в простое и при незначительной нагрузке. Однако, тестирование системы под серьезной нагрузкой, например в таких приложениях как Prime95, приводит к просадке напряжения до 1.27В (а в некоторых случаях и еще меньше), что приводит к появлению нестабильности в работе системы. Поднятие напряжения до более высоких значений в простое, приводит к значительному повышению температуры процессора и, соответственно, к его более быстрой деградации. При увеличение частоты процессора, за счет изменения множителя, пропорционально увеличивается и напряжения на нем, однако, происходящее при этом незначительное падение напряжения создает определенные препятствия для успешного разгона.

Как победить падение напряжения
Для борьбы с этой проблемой была специально придумана функция LLC. LLC означает Load-Line Calibration. Функция увеличивает напряжение vCore, чтобы компенсировать его просадку при высокой нагрузке. Это позволяет нивелировать разницу напряжения на процессоре в простое и под нагрузкой. LLC является незаменимой опцией, когда речь идет об использовании разогнанной системы в режиме 24/7. Но перед тем как вы включите параметр LLC в настройках BIOS вашей системы, дочитайте эту статью до конца.

Глава 2: Различные уровни LLC

Поскольку дизайн цепей питания каждой материнской платы индивидуален, невозможно создать одну настройку, которая компенсировала бы просадку напряжения vCore. Как вы понимаете, технического решения, прекрасно работающего на платах с невысоким энергопотреблением, будет недостаточно для высокопроизводительных плат геймерского и high-end класса, с большим количеством фаз питания и компонентами высокого качества. С другой стороны, функция LLC на материнских платах high-end класса может привести к нежелательному результату на более слабых моделях плат, а именно к чрезмерно высокому напряжению. Также поскольку каждая материнская плата и процессор могут реагировать по разному на включение LLC, сложно разработать одну универсальную настройку LLC одинаково хорошо подходящую для любых конфигураций системы. Вот почему при открытии опции LLC в BIOS вы увидите большое количество параметров (0%, 25%, 50%, 75%, 100%). Для того, чтобы продемонстрировать как легко можно устранить просадку напряжения Vdroop на процессоре, мы возьмем плату MSI Z170A GAMING M7 и процессор Intel i7-6700K. Установим параметр ‘CPU Loadline Calibration Control’ в BIOS в режим ‘Mode 1’. Мы установим напряжение vCore равное 1.3В и разгоним процессор до 4.5ГГц. Запустим тест Prime95.


Как включить LLC на материнской плате Z170A GAMING M7


В игру вступает LLC, поддерживая напряжение на процессоре равным 1.3В (нажмите для увеличения)

Как видите, напряжение vCore под нагрузкой сейчас составляет 1.304В, что точно соответствует установленному в BIOS значению. Мы видим, что напряжение vCore в простое также равно 1.304В. Пример показывает, что LLC это отличное решение для любого оверклокера, позволяющее разгонять систему и получать максимальную стабильность процессора при разгоне. Убедитесь сами, что LLC действительно незаменимая функция при разгоне. Именно для этой материнской платы, которую мы только что протестировали есть только один параметр функции LLC, это ‘Mode 1’. Однако, как мы отметили выше, есть модели материнских плат с большим количеством параметров LLC. Какие же параметры необходимо использовать, что бы получить под нагрузкой на 100% идентичное установленному напряжение?

 

Глава 3: Практическое применение LLC: Не переусердствуйте

Ключевой момент здесь заключается в тонкой настройке. Выясните какие настройки наиболее оптимальны для вашей системы, когда эффект падения напряжения перестает себя проявлять и в тоже время избегая чрезмерного повышения напряжения. В большинстве случаев настройки 50% или 75% LLC должно быть достаточно. Экстремальные оверклокеры могут попробовать включить параметр в 100%, что в большинстве случаев приведет к значительному повышению напряжения в простое и незначительному повышению напряжения под нагрузкой. Поиск оптимальных настроек это ключ к получению стабильности при разгоне в любых условиях. Однако, будьте аккуратны при повышении напряжения, если планируйте использовать систему в режиме 24/7, поскольку как было сказано выше, работа при повышенном напряжении приводит к быстрому деградированию процессора и сокращению срока его службы. Несмотря на то, что функция LLC незаменима при оверклокинге, будьте аккуратны при ее использовании, также как и при обычном поднятии напряжения vCore на процессоре.

Заключение

При поиске оптимальных настроек для разгона системы, особенно если вы планируйте использовать разогнанную систему 7 дней в неделю, всегда проверяйте наличие опции LLC в BIOS вашей материнской платы и при наличии, обязательно включайте ее. LLC может по-настоящему помочь вам получить несколько лишних сотен мегагерц из вашей системы и улучшить стабильность при разгоне. Однако, исходя из общих соображений безопасности при разгоне, будьте аккуратны при использовании функции LLC. На некоторых материнских платах и в определенных конфигурациях может наблюдаться излишне высокое напряжение на процессоре, что приводит к быстрой его деградации (также зависит от используемой системы охлаждения). На платформе Z170 функция LLC оказывает значительное влияние поскольку регулятор напряжения находится на материнской плате, в то время как на платформе Haswell он спрятан внутри процессора, делая работу функции LLC практически невозможной. LLC делает нашу жизнь проще, попробуйте и убедитесь сами!

ru.msi.com

Как разогнать процессор Intel Core 9-го поколения до 5 ГГц на материнской плате MSI серии Z390. Несколько практических советов | Периферия | Блог

Недавно компания Intel выпустила процессоры 9-го поколения вместе с чипсетом Z390. Продуктовую линейку пополнили модели Core i9-9900K, i7-9700K и i5-9600K. По сравнению с процессорами 8-го поколения было увеличено количество вычислительных ядер, чтобы более успешно конкурировать с продуктами AMD. Так, у модели Core i9-9900K имеется 8 ядер, способных выполнять 16 вычислительных потоков одновременно!

В свою очередь, компания MSI представила 9 моделей материнских плат на базе чипсета Z390 для процессоров 9-го поколения. Среди них, например, MEG Z390 ACE с мощной 13-фазной системой питания. И в данной статье мы расскажем, как с их помощью разогнать процессор Core i9-9900K до частоты 5,0 ГГц и выше. Наши инструкции подходят для всех плат MSI серии Z390, и даже неопытные пользователи смогут осуществить разгон своей системы, просто выполнив их шаг за шагом.

↓ [url="https://www.dns-shop.ru/catalog/17a89a0416404e77/materinskie-platy/?p=1&mode=list&brand=brand-msi&f=hnoz8]Материнские платы MSI Z390

ЧТО ТАКОЕ РАЗГОН?

Разгон – это увеличение частоты работы компьютерных компонентов по сравнению со стандартным уровнем, чтобы повысить их производительность. Разогнать можно все ключевые узлы: процессор, память, видеокарту. Однако, разгон всегда связан с определенным риском. Он может привести к нестабильной работе компьютера или даже повреждению компонентов.

Технология Intel® Turbo Boost – это официальный разгон от компании Intel. Благодаря ей частота процессора меняется в зависимости от его нагрузки, чтобы соблюсти баланс между энергопотреблением и производительностью.

Мы же покажем другой способ разгона, который позволяет задавать параметры работы процессора вручную.

ЧИПСЕТ INTEL® Z390 И ПРОЦЕССОРЫ INTEL® 9-ГО ПОКОЛЕНИЯ

В линейку процессоров Intel Core 9-го поколения входят модели Core i9-9900K, i7-9700K и i5-9600K. Все они поддерживают разгон. По сравнению с восьмым поколением, девятое использует в качестве термоинтерфейса припой, а не термопасту, поэтому такие процессоры должны лучше охлаждаться, а значит и обладать более высоким разгонным потенциалом. Благодаря этому максимальная частота процессора Core i9-9900K в режиме Turbo достигает 5 ГГц.

Отличия чипсета Z390 от его предшественника Z370 состоят в поддержке беспроводного модуля Intel Wireless-AC и интерфейса USB 3.1 Gen2. По сравнению с процессорами 8-го поколения, модели 9-го поколения отличаются лучшим охлаждением, а значит и увеличенным разгонным потенциалом, за счет использования припоя в качестве термоинтерфейса.

Линейка процессоров Intel® Core 9-го поколения включает в себя модели i5-9600K, i7-9700K и i9-9900K. Термопакет каждой равен 95 Вт, все они поддерживают технологию Intel Turbo Boost 2.0. Количество ядер увеличено по сравнению с предыдущим поколением: до 6 у модели i5-9600K и до 8 у моделей i7-9700K и i9-9900K. Процессор i9-9900K – единственный из них, в котором реализована технология Hyper-Threading, позволяющая выполнять два вычислительных потока на одном ядре одновременно для повышения общей производительности.

ОБЗОР РАЗГОННЫХ ВОЗМОЖНОСТЕЙ ПРОЦЕССОРОВ INTEL 9-ГО ПОКОЛЕНИЯ

На то, какой частоты можно достичь при разгоне, влияние оказывают несколько факторов. В их числе конструкция системы питания материнской платы, наличие радиатора для охлаждения транзисторов и, самое важное, разгонный потенциал самого чипа. У каждого экземпляра процессора имеется свой частотный потолок. Хорошие чипы могут работать на более высокой частоте, чем менее удачные, а также требовать меньшего напряжения питания.

Мы взяли несколько экземпляров процессоров Intel 9-го поколения и выявили соотношение между их частотой и напряжением. Все они были поделены на классы A, B и C в соответствии с результатами тестов. Класс A лучше всего подходит для разгона, класс C – плох в разгоне, а класс B – нечто среднее между двумя другими. На представленных ниже диаграммах показано процентное соотношение разных классов. Как видите, 20% экземпляров процессора i9-9900K хорошо проявляют себя при оверклокинге.

↓ По результатам тестов, A – лучшие чипы для разгона, B – средние, C – наименее удачные.

СООТНОШЕНИЕ ЧАСТОТА/НАПРЯЖЕНИЕ ПРОЦЕССОРОВ INTEL 9-ГО ПОКОЛЕНИЯ

Основываясь на результатах наших собственных тестов процессоров Intel 9-го поколения, мы составили кривую зависимости частоты от напряжения. Эта зависимость может быть иной для конкретного экземпляра, однако приведенные ниже данные послужат хорошей отправной точкой для разгонных экспериментов. Используя их, вы сэкономите время на поиск оптимальных настроек для вашего процессора.

РАЗГОН ПРОЦЕССОРА I9-9900K ЧЕРЕЗ ИНТЕРФЕЙС BIOS

Существуют разные методы разгона: с помощью интерфейса BIOS, эксклюзивной разгонной утилиты MSI Command Center или функции геймерского ускорения Game Boost. В данной статье мы будем осуществлять оверклокинг через BIOS. Начнем!

1. Входим в интерфейс BIOS

Первым делом нужно войти в интерфейс MSI Click BIOS, нажав клавишу Delete при загрузке компьютера.

2. Жмем F7, чтобы переключиться в расширенный режим BIOS

В интерфейсе Click BIOS имеется два режима: упрощенный и расширенный. В упрощенном режиме все часто используемые настройки выводятся на одной странице, а в расширенном пользователю предлагаются абсолютно все имеющиеся настройки BIOS. Именно расширенный режим рекомендуется для разгона. Для перехода в него нужно нажать клавишу F7.

3. Переходим к настройкам разгона

Перейдите на страницу OC, которая содержит все настройки, относящиеся к разгону. Переключите параметр OC Explore Mode из стандартного значения Normal в значение Expert. Теперь вы видите все, что нужно для оверклокинга, включая такие настройки как частотный множитель процессора, частота памяти, напряжение питания процессора и памяти.

↓ По умолчанию интерфейс BIOS открывается в упрощенном режиме. Чтобы перейти в расширенный, нажмите клавишу F7.

↓ На этой странице можно увидеть множество настроек.

4. Изменяем частотные множители (CPU Ratio и Ring Ratio)

Параметр Ring Ratio

Разгон процессора i9-9900K нужно начать с параметра CPU Ratio. Нашей целью является 5 ГГц, поэтому введите для него значение 50. Затем измените параметр Ring Ratio в значение 47. Вы можете попробовать другие значения для Ring Ratio, однако мы рекомендуем, чтобы оно было на 3 меньше, чем значение параметра CPU Ratio. Кольцевая шина Ring Bus связывает не относящиеся к вычислительным ядрам элементы процессора, такие как контроллер памяти и кэш, поэтому более высокая частота ее работы поможет достичь более высокой производительности.

Параметр CPU Ratio Mode

Множитель частоты процессора может задаваться в фиксированном (Fixed Mode) или динамическом (Dynamic Mode) режиме. Мы рекомендуем выбрать фиксированный. В нем частота процессора будет постоянной, независимо от нагрузки. В динамическом же она меняется в зависимости от нагрузки и, например, в спящем режиме опустится ниже обычного значения.

5. Меняем напряжение питания процессорного ядра

Далее займемся напряжением питания процессорного ядра. Для достижения высокой частоты напряжение нужно повысить. Наша рекомендация для частоты 5 ГГц: 1,32 В для процессора i9-9900K, 1,37 В для i7-9700K и 1,43 В для i5-9600K. Каждый экземпляр процессора будет работать стабильно на определенной частоте. Если вам повезет, то ваш заработает на частоте 5 ГГц при меньшем напряжении, чем указано выше. Поэтому вы можете попробовать понизить или увеличить рекомендуемое напряжение, чтобы найти оптимальный вариант именно для вашего чипа.

Автоматическая настройка напряжения

Если вы не имеете ни малейшего представления о том, какое напряжение питания требует ваш чип, можно оставить параметр CPU Core Voltage в значении Auto. В этом случае напряжение питания будет выбрано автоматически в соответствии с возможностями процессора. Такой выбор осуществляется на основе тестовых данных, собранных специалистами MSI, и зависит от конкретного процессора: ниже для удачных экземпляров и выше для не очень удачных. Впоследствии вы сможете изменить напряжение на основе результатов теста стабильности.

Функция автоматической настройки напряжения питания процессора, реализованная на материнских платах MSI серии Z390, не гарантирует идеального результата. Например, ниже показаны результаты для двух экземпляров процессора i9-9900K, разогнанных до 5 ГГц. Одному потребовалось напряжение 1,345 В, а другому – 1,38 В.

↓ Разным экземплярам процессора требуется разное напряжение питания.

Формирование напряжения питания ядра

Имеется 5 вариантов формирования напряжения питания процессорных ядер:

- Override Mode

- Adaptive Mode

- Offset Mode

- Override+Offset Mode

- Adaptive+Offset Mode

В режиме Override напряжение ядра остается фиксированным, независимо от нагрузки на процессор. В режиме Adaptive оно меняется в зависимости от нагрузки. В режиме Offset к базовому напряжению добавляется некоторое значение. Также есть комбинированные режимы: Override+Offset и Adaptive+Offset. Для разгона рекомендуется режим Override – он же по умолчанию выбирается в BIOS при оверклокинге.

Параметр CPU Loadline Calibration

Обычной ситуацией в работе процессора является уменьшение напряжения питания ядра при возрастании нагрузки. Такое проседание напряжения может привести к нестабильной работе компьютера во время разгона, и для исправления данной проблемы служит параметр CPU Loadline Calibration. Наша рекомендация – оставить его в значении Auto (Mode 3), чтобы система BIOS применяла оптимальные значения этого параметра во время разгона. Если вам хочется узнать об этом больше, ознакомьтесь с нашей статьей ЧТО ТАКОЕ LLC И ПОЧЕМУ МАТЕРИНСКИЕ ПЛАТЫ MSI Z370 — ЛУЧШИЙ ВЫБОР ДЛЯ ОВЕРКЛОКЕРОВ?

6. Отключаем технологию Intel C-State (C-State: CPU State)

Технологии управления электропитанием Intel, такие как C-State и Package C-State, могут оказывать негативное влияние на стабильность компьютера при разгоне. Чтобы избежать этой проблемы, мы рекомендуем отключить их.

7. Готово! Жмем F10, чтобы сохранить изменения.

Задав все необходимые настройки, нажмите на клавишу F10, чтобы их сохранить и выйти из интерфейса BIOS. Для этого выберите Yes в появившемся диалоговом окне.

ТЕСТ СТАБИЛЬНОСТИ ДЛЯ РАЗОГНАННОГО КОМПЬЮТЕРА

После того, как все параметры разгона будут заданы в интерфейсе BIOS, наступит время провести тест стабильности. Если компьютер будет работать без проблем, значит можно попытаться поднять частоту еще больше, чтобы достичь еще более высокой производительности. Или можно снизить напряжение, чтобы уменьшить температуру процессора. Если же компьютер станет работать с ошибками, нужно увеличить напряжение питания процессора или снизить его частоту.

Рекомендованные приложения для теста стабильности

Ниже представлен список популярных утилит, которые часто используются для проверки стабильности компьютера.

- Утилита CPU-Z используется для проверки частоты процессора.

- Утилиты Core Temp и HWiNFO используются для отслеживания температуры и энергопотребления процессора.

- Приложение Cinebench R15 служит для быстрой проверки стабильности и отслеживания роста производительности компьютера.

- AIDA64 или Prime95 v26.6 (non-AVX) / Prime95 v27.9 (AVX) используются для стресс-теста.

Проверка стабильности с приложением Cinebench R15

Cinebench R15 – это полезный инструмент для быстрой проверки стабильности компьютера. При этом утилита CPU-Z может использоваться для того, чтобы проверить работоспособность настройки CPU Ratio, которую мы меняли в BIOS, а утилита Core Temp – для мониторинга температуры процессора. Если компьютер работает нестабильно, попробуйте увеличить напряжение питания (Core Voltage) или снизить множитель частоты (CPU Ratio). Если температура процессора превышает 90°, следует снизить его напряжение питания.

Рост производительности процессоров серии 9000 в тесте Cinebench R15

Ниже представлены данные о результатах теста Cinebench R15 для процессоров i9-9900K, i7-9700K и i5-9600K. Можете использовать их для оценки того, насколько производительность вашего процессора растет по мере повышения его частоты.

↓ i5-9600K Cinebench R15

↓ i7-9700K Cinebench R15

↓ i9-9900K Cinebench R15

Данное руководство по разгону предназначено для платформы Z390 с системой BIOS компании MSI. Все приведенные в нем результаты были получены нами во время собственных тестов. Если вы являетесь новичком, то следуйте этим инструкциям шаг за шагом, используя наши настройки. Для более опытных пользователей они могут стать фундаментом для того, чтобы затем вручную подкорректировать параметры разгона в соответствии со своими предпочтениями.

Подробнее о материнских платах MSI серии Z390:

https://ru.msi.com/Landing/intel-z390-gaming-motherboard

*Примечание: Ответственность за риск, связанный с разгоном, ложится на пользователя. Неправильные действия при разгоне могут привести к повреждению компонентов. Представленная в данной статье информация относится к конфигурации с системой BIOS версии E7B10IMS.100, двухканальной памятью DDR4-2133 и самосборной системой водяного охлаждения. Параметры разгона, тепловыделение и производительность компьютера могут меняться в зависимости от версии BIOS и отличий в конфигурации. В процессе разгона рекомендуется соблюдать максимальную осторожность.

club.dns-shop.ru

Остужаем и сохраняем процессоры. Вопросы снижения энергопотребления и тепловыделения ноутбуков и компьютеров. Часть 1.

Введение.
Достаточно давно мне хотелось остановиться на вопросах обеспечения снижения энергопотребления современных персональных компьютеров и ноутбуков. Многие пользователи оправданно зададут вопрос: "Зачем это надо? - производитель уже позаботился обо всех тонкостях энергопотребления моей системы. Как показывает опыт, к сожалению, это практически всегда не так. Если производители ноутбуков еще как-то стараются обеспечить снижение энергопотребления своих устройств, то с персональными компьютерами, как правило, все находится в запущенном состоянии.

Энергопотребление персональных компьютеров и ноутбуков необходимо снижать по следующим причинам:
- снижая энергопотребление ноутбука, вы продлеваете его время автономной работы,
- продлевая время автономной работы ноутбука, вы добиваетесь, снижения циклов заряда/разряда аккумуляторной батареи и продлеваете его срок службы,
- вместе с энергопотреблением снижается и тепловыделение компонентов ноутбука или персонального компьютера, что позволяет, с одной стороны, повысить стабильность работы системы, с другой стороны, продлить срок службы электрических компонентов,
- снижение энергопотребления персонального компьютера и ноутбука позволит сократить расходы на электричество. Для многих это до сих пор не критично, но стоимость электроэнергии растет день ото дня, государственная политика заставляет граждан устанавливать электросчетчики, количество компьютеров в семье увеличивается из года в год, длительность их работы удлиняется в пропорциональных масштабах, поэтому в технологиях снижения энергопотребления заинтересован каждый из нас.

Определение ключевых компонентов энергопотребления системы.


Несмотря на то, что современный персональный компьютер и ноутбук настолько различны между собой, как правило, они полностью идентичны по схемам строения. В ноутбуке производители стараются компоновать все, таким образом, чтоб максимально уменьшить итоговые размеры. В то время как любой персональный компьютер является модульной системой, любой компонент которой может быть заменен без каких-либо проблем.

-- картинка кликабельна --


На представленном рисунке видны компоненты стандартного системного блока. Знание этих компонентов системы позволит вам еще на этапах сборки или апгрейда своего компьютера определиться с теми параметрами, которые позволят вам снизить энергопотребление системы. Итак, современный системный блок содержит:
- корпус,
- блок питания,
- материнская плата,
- процессор,
- оперативная память,
- видеокарта/видеокарты,
- жесткий диск/диски,
- привод компакт-дисков,
- дисководы,
- картридеры,
- системы охлаждения процессора, корпуса.
Звуковые карты, ТВ-тюнеры в отдельном исполнении редко встречаются в современных компьютерах. Во-первых, все существующие материнские платы имеют встроенные контроллеры звука, которые не уступают по качеству звучания дешевым звуковым картам и картам среднего ценового диапазона. Во-вторых, ТВ-тюнеры отслужили свой век, как и коаксиальное телевидение. В эпоху FulHD, IP-TV, DVB говорит о ТВ-тюнерах попросту излишне.

Энергосбережение: корпус и блок питания.


Для многих может показаться странным, обсуждать блок питания и корпус в контексте энергосберегающих технологий. Тем не менее, практика показывает, что пользователи зачастую выбирают корпус по внешнему виду и его ценовому параметру. При этом следует понимать, что малогабаритный, плохо вентилируемый корпус будет способствовать перегреванию компонентов системы и снижению стабильности работы того же процессора, оперативной памяти, материнской платы при снижении напряжений питания, чем мы будем заниматься в дальнейшем.

Блок питания может стать источником неэффективного энергопотребления в первую очередь. Любой современный блок питания должен обеспечивать высокие показатели КПД при преобразовании тока высокого напряжения в 12, 5 и 3,3 вольта.

Любой современный блок питания имеет соответствие одному из стандартов серии 80 Plus. Стандарт 80 Plus был принят еще в далеком 2007 году, в рамках энергосберегающих стандартов Energy Star четвертого пересмотра. Данный стандарт требует от производителей блоков питания обеспечение 80% КПД своих устройств при различных нагрузках, - 20%, 50% и 100% от номинальной мощности.

Из этого следует, что для обеспечения максимальной эффективности вашего блока питания, он должен быть нагружен не менее 20 % от своей номинальной мощности. Абсолютно не правильно, когда пользователь приобретает блоки питания "с запасом" на 900 и 1200 Ватт. При выборе блока питания руководствуйтесь тем, что без нагрузки на систему, нагрузка на него не должна падать ниже 20% и он должен иметь сертификат соответствия 80 Plus.

-- картинка кликабельна --


Справедливости ради, нужно отметить, что на сегодняшний день стандарт 80 Plus дифференцировался на следующие категории:
- 80 Plus
- 80 Plus Bronze
- 80 Plus Silver
- 80 Plus Gold
- 80 Plus Platinum.

Различие между стандартами заключается в обеспечении более высоких показателей КПД внутри семейства стандарта 80 Plus. Если при 50% нагрузке блок питания стандарта 80 Pus обеспечивает КПД на уровне 80%, то дорогие блоки питания соответствующие стандарту 80 Plus Platinum обеспечивают КПД на уровне 94% и выше.


Энергосбережение: материнская плата.


На сегодняшний день материнские платы развиваются максимально быстро, не отставая от развития процессоров. Следует понимать, что материнские платы состоят из различных наборов контроллеров, обеспечение слаженной работы которых, и является основной задачей материнской платы. В большинстве случае, энергопотребление материнской платы зависит от вида примененного северного и южного моста. Современные северные мосты значительно снизили свое энергопотребление, что повлекло за собой уменьшение размеров их систем охлаждения. Многие пользователи помнят времена, когда система охлаждения северного моста состояла из нескольких тепловых трубок соединенных с радиаторами охлаждения. Появление последнего поколения системной логики от Intel позволило снова отойти на уровень обычных радиаторов.

В силу общих тенденций, многие именитые производители материнских плат, такие как Gigabyte, ASUS, MSI демонстрируют на выставках свои новые "экологичные" продукты. Как правило, экологичность данных решений достигается за счет оптимизации схем питания процессора и видеокарт, - основных потребителей любого системного блока. Как правило, это осуществляется за счет применения многофазных стабилизаторов напряжения процессоров.

Современные материнские платы, применяют в схемах питания от шести до двенадцати стабилизаторов напряжения. Данные схемы значительно повышают стабильность подаваемого напряжения, но увеличивают энергопотребление. Поэтому производители "экологичных" материнских плат оснащают их технологиями, которые при низкой нагрузке на систему питания выключают часть фаз, и питание процессора осуществляется за счет одной-двух фаз стабилизаторов напряжения.

При покупке материнской платы, также следует быть более внимательным. Приобретение "навороченной" материнской платы всегда оборачивается повышенным энергопотреблением. Если вам никогда не будет нужен порт FireWire, не следует за него переплачивать, а затем ежемесячно платить за то электричество, которое потребляет его контроллер на материнской плате.


Энергосбережение: процессор.


Ведущие производители процессоров AMD и Intel на протяжении последних десятилетий занимаются снижением энергопотребления своих продуктов. Следует отдать должное, вся эстафета была начата компанией AMD, в которой она удерживала прочное лидерство на протяжении двух-трех лет. Были времена, когда процессоры компании AMD с технологией Cool'n'Quiet имели значительно меньшее энергопотребление, нежели процессоры от компании Intel линеек Pentium 4 и Pentium D.

Компания Intel быстро наверстала свое отставание и внедрила технологию EIST - Enhanced Intel SpeedStep Technology, которая прекрасно себя показала в последних поколениях процессоров. В то время как новые процессоры от компании Intel обзаводятся все новыми и новыми технологиями энергосбережения и наращивают производительность, от компании AMD существенных рывков вперед мы не видим.

Как известно, ключевым энергопотребителем любого персонального компьютера или ноутбука является именно процессор, поэтому мы остановимся на вопросах снижения его энергопотребления.

Для того чтоб понять, как можно снизить энергопотребление процессора, вы должны четко для себя представлять, от чего оно зависит. Энергопотребление современного процессора зависит:
- от напряжения питания подаваемого на транзисторы,
- частоты работы процессора. Частота работы процессора формируется из произведения его множителя на частоту шины.

По сути дела, технологии Cool'n'Quiet и EIST занимаются снижением энергопотребления именно за счет этих двух параметров. К сожалению, чаще всего мы сталкиваемся с работой не с напряжением питания процессора, а с работой его частотой. При снижении нагрузки на процессор энергосберегающие технологии снижают множитель процессора и тем самым добиваются снижения энергопотребления процессора. При появлении нагрузки на процессоре, множитель возвращается на прежние значения, и процессор работает, как ни в чем не бывало. К сожалению, данная методика снижения энергопотребления не всегда позволяет добиться высокой энергоэффективности. Покажем на примере.
В качестве примера выбран процессор Core 2 Duo с номинальной частотой работы 2,0 Ггц.

-- картинка кликабельна --


Из представленной диаграммы видно, что температура работы процессора без включения режима энергосбережения, при номинальном множителе x12 и напряжении питания 1,25 вольт мы имеем рабочую температуру порядка 55-56 градусов в простое.

-- картинка кликабельна --


После подачи нагрузки на процессор, при аналогичных условиях работы мы фиксируем среднею температуру работы процессора порядка 71-72 градусов, что и было зафиксировано на наших диаграммах.
Температура ядер процессора снимается по внутренним датчикам, поэтому погрешности минимальны. Учитывая тот факт, что между энергопотреблением процессора и его рабочей температурой имеется прямопропорциональная связь, мы будем ориентироваться на данный параметр при оценке его энергоэффективности.
Следующим этапом мы снизили множитель процессора до минимально возможных значений, до 6. При этом частота процессора составила 997 Мгц, грубо можно округлить до 1 Ггц. Напряжение питания осталось неизменным, в районе 1,25 вольт.

-- картинка кликабельна --


Из представленных данных видно, что в режиме простоя, рабочая температура процессора изменилась очень мало, она осталась, по-прежнему, в рамках 55-56 градусов. Отсюда напрашивается вывод о том, что от простого снижения частоты работы процессора мы выигрываем очень мало.

-- картинка кликабельна --


После этого мы подали нагрузку на процессор, но множитель и рабочее напряжение процессора оставили на прежнем уровне. Естественно, подобное тестирование имеет значение только с практической стороны, реализовывать его в жизни мы не рекомендуем. Связано это с тем, что именно от частоты процессора зависит его производительность, и никто не покупает высокочастотный процессор для его последующей работы на заниженных частотах. После стабилизации температурных значений, мы получили среднею рабочую температуру равную 65-66 градусам, что на шесть градусов ниже, чем при работе процессора на номинальной частоте равной 2 Ггц.
Из этого всего следует, что действительно энергосбережение от снижения рабочей частоты процессора путем изменения значения множителя имеет место быть, но оно не того уровня, которого нам бы хотелось видеть, в каждом конкретном случае. Поэтому мы приступаем к работе с напряжением процессора.


Наш процессор и материнская плата позволяют изменять напряжение питания процессора в промежутке 0,95-1,25 вольт. Шаг составляет 0,0125 вольт. Это связано с тем, что процессор установлен в ноутбуке, материнские платы которых, редко когда дают возможность менять рабочие напряжения компонентов в широких диапазонах.
Для того чтоб доказать эффективность снижения рабочего напряжения процессора в плане снижения его энергопотребления и тепловыделения, мы оставим его рабочую частоту на уровне 1 Ггц, но параллельно снизим рабочее напряжение до минимально возможных значений, - 0,95 вольт.

-- картинка кликабельна --


Данная манипуляция позволила нам снизить температуру простоя процессора до 45-46 градусов, что представлено на диаграмме. В данном режиме мы добиваемся максимально возможно низкого энергопотребления процессора. Снижение рабочего напряжения до 0,95 вольт позволило нам снизить рабочую температуру простоя на 10 градусов!!!

-- картинка кликабельна --


Для оценки эффективности метода снижения рабочего напряжения процессора, мы подали на него нагрузку. В результате чего мы получили рабочую температуру в нагрузке равную 50-51 градусам, в то время как без изменения напряжения и аналогичной производительности системы на частоте 1 Ггц ранее мы получали 65-66 градусов. Полученные нами данные зафиксированы на диаграммах.

Энергопотребление процессора: выводы


- Из всего вышеизложенного следует, что для обеспечения высокой энергоэффективности процессора не следует только снижать рабочую частоту процессора, как это делается многими ноутбуками и персональными компьютерами в рамках энергосберегающих технологий от Intel и AMD. Снижение частоты работы процессора всегда должно сопровождаться снижением его рабочего напряжения.

- Учитывая тот факт, что любой процессор может работать при более низком напряжении при более низких частотах своей работы, следует подобрать свое минимальное стабильное напряжение для каждой частоты его работы.

- Для определения приблизительных рабочих напряжений для каждой частоты (множителя) процессора достаточно построить график прямой зависимости минимального напряжения от частоты путем нанесения максимальных и минимальных значений. Это значительно облегчит работу начинающим пользователям.


- Для обеспечения необходимой энергоэффективности процессора, необходимо правильно настроить существующие технологии или применять сторонние программные продукты, которые могли бы снижать частоту процессора, его напряжение при низкой нагрузке и повышать их при ее повышении.

Для этих целей я рекомендую программу RightMark CPU Clock Utility - RMClock, которую использую уже на четырех поколениях процессоров, бесплатного функционала которой хватает для всех вышеописанных манипуляций.


Энергосбережение процессора: RightMark CPU Clock Utility (RMClock)


Утилита имеет небольшой вес, порядка 250 килобайт. Не требуется какой-либо установки, просто распаковываете его в выбранную папку и запускаете файл RMClock.exe. Для простоты ссылка на архив с программой будет представлена в конце нашей статьи.

На момент написания статьи последняя версия программы 2.35 имеет следующий функционал в рамках бесплатного использования:
- контроль тактовой частоты процессоры,
- контроль троттлинга,
- контроль уровня загрузки процессора, ядер процессора,
- контроль рабочего напряжения процессора,
- контроль температуры процессора/ядер процессора,
- постоянный мониторинг указанных параметров,
- возможность изменения напряжения процессора из операционной системы,
- возможность изменения множителя процессора (его частоты) из операционной системы,
- автоматическое управление частотой и напряжением процессора в зависимости от подаваемой нагрузки на него. Концепция носит название "Perfomance on demand" или "производительность по требованию".

-- картинка кликабельна --


Запустив программный продукт, вы попадаете в один из разделов его меню. Мы перечислим весь функционал RightMark CPU Clock Utility по порядку. В разделе About представлена информация о разработчиках, их сайте, и ссылка на лицензионное соглашение. Базовая версия продукта поставляется бесплатно для некоммерческих целей, никакой регистрации не требуется. Имеется профессиональная версия, которая предоставляет гораздо более широкий функционал настроек работы системы и стоит символические 15 долларов. Для начинающего пользователя возможностей базовой версии вполне хватит.

-- картинка кликабельна --


В закладке "Settings" представлены настройки программы для удобства его использования. К сожалению, русского языкового пакета, который встречался в ранее выпущенных версиях продукта, в нашем случае не оказалось, но в этом нет ничего страшного. В данной закладке имеется возможность выбора цвета оформления и, прошу обратить внимание, - режим автозапуска.

За режим автозапуска отвечает подраздел "Startup options". Автозапуск RightMark CPU Clock Utility при загрузке операционной системы позволяет максимально легко решить вопросы энергосбережения без вмешательства в BIOS компьютера, что особенно полезно, когда BIOS не предоставляет каких-либо возможностей по изменению рабочего напряжения и множителя процессора. Подобное встречается в BIOS'ах современных ноутбуков.

Поставив галочку в окне пункта "Start minimized to system tray" вы избавите себя от надобности постоянно закрывать окно программы при очередном запуске. Оно будет выполнять свои задачи после автоматического запуска с предварительным свертыванием.

Пункт "Run at Windows startup:" позволяет установить автоматический запуск программного продукта и выбрать, как это делать. В нашем случае мы осуществляем автоматический запуск через реестр, также имеется возможность автоматического запуска через папку "Автозагрузка". Оба варианта прекрасно работают, начиная от Windows XP заканчивая Windows 7.

Имеется возможность записи необходимых параметров работы процессора в Log-файл. Данный параметр бывает необходим для выяснения причин нестабильной работы системы.

-- картинка кликабельна --


В закладке "CPU info" представлена информация о процессоре, его характеристики на текущий момент. Перечислены поддерживаемые технологии энергосбережения. Чем более современный процессор, тем больше технологий он поддерживает.

-- картинка кликабельна --


В закладке "Monitoring" представлены диаграммы изменения рабочей частоты ядра процессора, его троттлинг, нагрузка на него, множитель, рабочее напряжение и температура. Количество вкладок соответствует количеству ядер процессора.

-- картинка кликабельна --


Во вкладке "Management" пользователю предоставляется возможность выбора метода переключения множителей, методов определения фактической нагрузки на процессор, интеграции программного продукта с энергосберегающими технологиями операционной системы.

Пункт "P-states transitions method" позволяет выбрать метод перехода от одной заданной комбинации множителя-напряжения на другой. Имеются следующие возможности выбора:
- Single-step: множитель переключается с шагом равной единице. То есть при переходе с множителя 10 на множитель 12 всегда будет промежуточное звено 11.
- Multi-step: переход будет осуществляться с переменным шагом. В случае нашего примера, с 10 сразу на 12.

Пункт "Multi-CPU load calculation" позволяет определить метод определения загрузки процессора. Данный параметр будет влиять на скорость переключения комбинации множитель-напряжение на процессоре. В каждом случае подбирается исходя из индивидуальных особенностей работы пользователя. Обычно данный параметр мы не меняем и оставляет на указанном на скрине значении, который означает, что оценка будет осуществляться по максимальной нагрузке любого из ядер процессора.

Пункт "Standby/hibernate action" позволяет выбрать действие программы при переходе в режим гибернации или сна. Как правило, оставление текущего профиля работы является вполне достаточным.

В разделе "CPU Default Settings" представлены следующие пункты:
- Restore CPU defaults on management turns off, который позволяет вернуть первоначальные параметры работы процессора после выбора режима "No Power Managemet".
- Restore CPU defaults on application exit, который позволяет вернуть первоначальные параметры работы процессора после выключения RightMark CPU Clock Utility.

В разделе "CPU defeaults selection" выбирается метод определения комбинаций множитель-напряжение у процессора:
- CPU-defined default P-state, комбинация определяются процессором,
- P-state found at startup, комбинации определяются при загрузке программы,
- Custom P-state, комбинации устанавливаются вручную.

Пункт "Enable OS power management integration" позволяет создать профиль в схемах энергопотребления системы под названием "RMClock Power Management".

-- картинка кликабельна --


В разделе "Profiles" пользователю предлагается задать те самые комбинации множитель-напряжение, - P-state. Во-первых, предлагается выбрать профили в зависимости от режима энергопотребления, - сеть или батарея/ИБП.

Ниже предлагается выбрать множители процессора и напряжение для них в каждом конкретном случае. Как правило, я выбираю три значения:
- минимальный множитель и минимальное напряжение для него,
- максимальный множитель и минимально рабочее напряжение для него,
- среднее значение множителя, а напряжение для него устанавливается самой программой исходя из максимальных и минимальных значений.

Как правило, подобный подход подходит для большинства ноутбуков и персональных компьютеров. Естественно, бывают исключения, и пользователю приходится длительно подбирать минимальное напряжение для каждого множителя.

-- картинка кликабельна --


Затем устанавливаете галочки для уже выбранных профилей в соответствующих разновидностях работы программы:
- No management - без управления, в настройках не нуждается
- вкладки "Power Saving", "Maximal performance", "Perfomance on Demand" по сути дела равнозначны и позволяют установить диапазоны изменения множителей-напрежения процессора.

Например, в нашем случае для вкладки "Power Saving" мы выбрали минимально возможный множитель и напряжением, для вкладки "Maximal performance" максимальный множитель и минимально рабочее напряжение при данной частоте у процессора.

В разделе производительность по требованию "Perfomance on Demand" выбрали три комбинации множитель-напряжение:
- x4-0,95 вольт
- x9-1,1 вольт
- x12-1,25 вольт.

-- картинка кликабельна --


Затем наводите на значок в области уведомлений рабочего стола программы RightMark CPU Clock Utility и выбираете необходимые параметры процессора, которые всегда должны вам показываться и выбираете текущий профиль работы. Я всегда ставлю для мониторинга частоту процессора и его температуру работы, что всегда удобно и отчасти интересно.

-- картинка кликабельна --


На рисунке представлены три пиктограммы в области уведомлений рабочего стола:
- пиктограммы программы RightMark CPU Clock Utility,
- текущая частота процессора,
- его текущая температура.

-- картинка кликабельна --


На скрине представлены диаграммы работы процессора в режиме "Производительность по требованию". Видно, как программный продукт при увеличении нагрузки на процессор ступенчато увеличивает его множитель и напряжение вначале до x9-1,1 вольт и при необходимости до максимальных x12-1,25 вольт. Как только нагрузка падает, все ступенчато возвращается обратно.
Подобная регулировка практически никак не влияет на итоговую производительность системы.

-- картинка кликабельна --


Во вкладке "Battery info" предлагается выбрать способы оповещения о состоянии аккумуляторной батареи ноутбука.

Во вкладке "Advanced CPU settings" предлагается выбрать опрашиваемые температурные датчики процессора, включаемые технологии энергосбережения.
Все эти энергосберегающие технологии описаны на сайте Intel. Мы просто хотим сказать, что, как правило, их включение не влияет на стабильность системы, поэтому - почему бы их не включить?

Наш процессор относится к раннему семейству процессоров Core 2 Duo. Современные процессоры поддерживает не активные у нас технологии:
- Engage Intel Dynamic Acceleration (IDA)
- Enable Dynamic FSB Frequency Switching (DFFS)

Первая технология позволяет процессору повысить множитель одного из ядер при отсутствии нагрузки на второе. Например, работают два ядра процессора при частоте 2,2 Ггц. Процессор оценивает, что нагрузка подается только на одно ядро, то его множитель будет повышен, и он начнет работать на частоте 2,4 Ггц. Технология интересная, но опасная на разогнанных процессорах.

Вторая технология позволяет добиться еще более сильного снижения рабочей частоты процессора в режимах простоя. Ранее мы говорили о том, что итоговая частота процессора - это всегда произведение множителя на частоту системной шины. Современные процессоры Intel в рамках технологии DFFS позволяют снижать не только значение множителя, но и частоту шины, что позволяет достичь еще более низких частот. Данная технология также опасна для разогнанных процессоров, так как можно получить нестабильность со стороны оперативной памяти.

-- картинка кликабельна --


Пожалуй, это все что мы хотели рассказать о программном продукте RightMark CPU Clock Utility. Остается посоветовать следить за ее обновлениями. При этом не имеет смысл обновляться, когда у вас уже на протяжении многих месяцев все стабильно работает. Имеет смысл искать новую версию при смене процессора или переходе на более современную операционную систему.
Использование программы RightMark CPU Clock Utility позволит вам максимально продлить жизнь не только своего процессора, но и системы питания материнской платы, а также значительно снизить шум от системы охлаждения процессора, который не будет надрываться для его охлаждения, когда вы будете печатать, смотреть фильмы или просто листать страницы в Интернете.

Энергопотребление процессора: определяем минимальное рабочее напряжение


В своей статье я многократно указывал на то, что важно определить минимальное рабочее напряжение для каждой частоты работы процессора. Делается это путем проб и ошибок. Как правило, последовательно выполняется следующий цикл задач:
- снижение напряжения на один пункт,
- проверка стабильности процессора в стресс-тестовом программном продукте,
- понижение или повышение напряжения на один пункт в зависимости от результатов стресс-тестирования.

Для стресс-тестирования процессоров существует множество программных продуктов. Они были описаны в одной из наших статей. Считаю, что наиболее ценной из них является программа Prime95. Ссылка на нее будет предоставлена в конце статьи. Она полностью бесплатна и доступна для скачивания в сети.

-- картинка кликабельна --


Последняя ее версия была выпущена в 2008 году, как раз тогда, когда было необходимо внедрить мультиядерность в тестирование. Имеется возможность выбора различных методов тестирования, указывать длительность тестирования, периодичность тестирования и т.д.

-- картинка кликабельна --


Выбираем метод тестирования в разделе "Options"=> "Torture test" и запускаем его. Длительность тестирования полностью зависит от вас. Как правило, при определении ориентировочного минимального напряжения я дожидаюсь либо первой ошибки, либо провожу тестирование в течение получаса. Если полчаса теста прошло без ошибок, снижаем напряжение на один пункт и вперед заново.
После того, как вы определились с минимальным напряжением окончательно, имеет смысл оставить тест на ночь. За несколько часов кропотливой работы, практически всегда удается выявить возникающие ошибки.
Нередко, операционная система зависает или в лучшем случае, выдает "синий экран смерти". Это говорит о том, что напряжение занижено и возникла ошибка, - следует поднять рабочее напряжение на процессоре для данной частоты.

-- картинка кликабельна --


В нашем случае, мы определили минимальное рабочее напряжение для нашего процессора. Как оказалось, при максимальной частоте в 2 Ггц нашему процессору 1,25 вольт совсем не нужны. Он вполне стабильно работает и при 1,00 вольтах. Стабильность операционной системы была обнаружена и при режиме 0,975 вольт, но Prime95 сообщил об ошибке, которая пропала после поднятия напряжения до 1,00 вольт.

В итоге мы имеем

:
- процессор с неизменным уровнем производительности и частотой работы 2 Ггц,
- максимальную рабочую температуру в нагрузке 62-63 градуса, вместо привычных 72 градусов,
- более низкое энергопотребление, которое позволяет без каких-либо схем энергопотребления от Acer, Asus, Samsung, Gigabyte максимально продлить длительность работы ноутбука от аккумуляторной батареи не теряя уровня производительности,
- более низкое энергопотребление позволит сократить расходы на электричество, особенно, если указать данные значения в описанном выше программном продукте RightMark CPU Clock Utility.

В действительности, подобное низкое рабочее напряжение процессора для оверклоккера говорит всегда об одном, - об его высоком разгонном потенциале. Но нюансам разгона у нас будут посвящены другие статьи, - тема разгона процессора выходит за рамки темы об энергосбережении.


Заключение.
Прочитав статью, у пользователя должен возникнуть вопрос: "Неужели производители настолько неумелые, что сами не понижают рабочее напряжение процессоров, особенно в ноутбуках, где это так критично?" Ответ прост и заключается в том, что процессоры выпускаются массово, ноутбуки также выходят с конвейера. Не в интересах производителей затягивать процесс производства, поэтому кому-то везет и его процессор показывает чудеса разгона, а у кого-то отказывается это делать, у кого-то процессор работает при напряжении 1,175 вольт, а у кого-то он стабилен и при 0,98 вольтах. Покупка электроники, - это всегда лотерея. Что скрыто под этикеткой в каждом конкретном случае, познается только на практике.
В заключение хочется поблагодарить разработчиков программных продуктов RightMark CPU Clock Utility и Prime95, которым наш портал МегаОбзор вручает золотую почетную медаль. Ждем ваших вопросов и напоминаем, что все, что вы делаете со своей электроникой, вы делаете на свой страх и риск.

Описанную в статье программу RightMark CPU Clock Utility можно найти по ссылке.
Описанную в статье программу Prime95 можно найти по ссылке.

megaobzor.com

Какой вольтаж поставить на проц?

3.4Ghz 1,275 3.6Ghz 1,35, после 1,3 начинается перегрев проца, нужно улучшать охлаждение

ставь по максимуму :)

Можно достигнуть недостижимых высот запитав от 220 вольт. Вообще, зачем страдать фигней и гнать неслабый процессор? Большого увеличения производительности ты все равно не увидишь. Впрочем, если ты уверен в себе - посети оверклокерские форумы.

Поставь водяное охлаждение и хоть до 10000 разганяй

Диапазон 1.225 - 1.312 В

вообще для разгона рекомендуется поднимать вольтаж не более 20 % от номинального. Если вам пофиг что спалите проц можете и на максимум поставить, вопрос на сколько его хватит только.

АндНик. психолог, инженер IT Современные материнские платы "по умолчанию" выставляют напряжение на процессоре и памяти. Изменения заводских параметров питания и частоты приводит к разогреву процессора и резкому уменьшению его ресурса. Обычно, разгоном занимается малограмотная молодежь, которая хочет "перехитрить" производителя... Но это всегда заканчивается тем, что в компьютере возникают проблемы...

Мой старенький атлон 2500 бартон 1.8 г напряжение 1.5 вольта Розогнан до атлон 3200 2.37 г напряжение 1.85 вольта ,,,Мне для инета хватает я игры не играю !!!

touch.otvet.mail.ru

Управление частотой процессора в Windows 10

Большинство современных процессоров используют различные технологии энергосбережения, такие как Intel SpeedStep или AMD Cool’n’Quiet. Эти технологии основаны на динамическом изменении частоты работы процессора в зависимости от нагрузки с целью снижения энергопотребление и тепловыделения.

Для понимания рассмотрим общие принципы работы данных технологий.

У процессора есть состояния производительности (P-States), которые представляют из себя комбинацию множителя частоты (Frequency ID, FID) и напряжения питания (Voltage ID, VID). Тактовая частота работы процессора получается путем умножения частоты системной шины (FSB) на FID, соответственно чем больше множитель, тем выше частота, и наоборот. Количество поддерживаемых состояний зависит от характеристик процессора (макс. частота, множитель и т.п.).

В ходе первоначальной загрузки в BIOS создается описание возможных состояний производительности. Это описание в соответствии с интерфейсом ACPI считывается операционной системой при запуске. В процессе работы операционная система отслеживает загрузку процессора, при снижении нагрузки обращается к драйверу процессора и переводит процессор в пониженное состояние. Снизив частоту и напряжение, процессор будет потреблять меньше энергии и, соответственно, меньше нагреваться. Ну а при увеличении нагрузки операционная система опять запросит изменение состояния процессора, но уже в большую сторону.

Когда и в какое из состояний переводить процессор, операционная система решает автоматически, в соответствии с текущей политикой энергосбережения. Но, кроме этого, в Windows есть возможность вручную задать диапазон регулировки, ограничив минимальное и максимальное состояние.

В моем компьютере стоит Intel Core I7 4790К. Согласно спецификации, он имеет базовую частоту 4ГГц, а с использованием технологии Turbo Boost может разгоняться до максимальных 4.4ГГц. Для того, чтобы посмотреть текущую скорость работы процессора, запустим «Диспетчер задач» (Ctrl+Shift+Esc) и перейдем на вкладку «Производительность». Как видите, на данный момент нагрузка невелика и процессор работает вполсилы, частота его работы составляет 1.84ГГц.

 

Попробуем немного покрутить настройки частоты процессора и посмотрим, что из этого получится. Для запуска оснастки управления электропитанием жмем клавиши Win+R и выполняем команду powercfg.cpl.

 

В открывшемся окне выбираем текущую схему электропитания, переходим по ссылке «Настройка схемы электропитания»

 

и жмем на ссылку «Изменить дополнительные параметры питания».

За частоту работы процессора отвечают параметры «Минимальное состояние процессора» и «Максимальное состояние процессора», находящиеся в разделе «Управление питанием процессора».

 

Обратите внимание, что у ноутбуков для каждого параметр доступны два варианта настроек. Первый отвечает за частоту процессора при автономной работе (от батареи), второй — при работе от сети.

 

Проверим, как влияет изменение настроек на частоту работы процессора. Для начала уменьшим максимальное состояние до 20% и проверим результат. Как видите, частота работы снизилась до примерно 0.78ГГц, что как раз составляет примерно 20% от базовой частоты.

 

Что интересно, снизить частоту ниже 20% мне это не удалось. При выставлении значения ниже 20% частота продолжает оставаться на том же уровне, т.е. для моего процессора 800МГц является минимальной поддерживаемой частотой.

 

Чтобы разобраться, почему так, запустим диагностическую утилиту CPU-Z. Как видите, в нашем случае частота шины составляет 100МГц, а множитель изменяется в диапазоне от 8 до 44. Отсюда и получаем возможность изменения частоты от минимальных 800МГц до максимума 4.4ГГц с шагом в 100МГц.

 

Но переключение осуществляется не по каждому множителю, а более дискретно. Другими словами, количество состояний производительности не соответствует количеству значений множителя. Посмотреть все доступные состояния можно утилитой RightMark Power Management. Например для испытуемого процессора доступно всего 15 состояний, а переключения между ними происходят с переменным шагом 200-300МГц.

 

Ну а на что влияет минимальная частота процессора? Для проверки установим значение минимальной частоты в 100% и убедимся, что скорость работы процессора сразу поднялась почти до максимуму и достигла 4.3ГГц. И это при том, что загрузка процессора составила всего 14%.

 

Есть еще одна настройка, отвечающая за частоту работы процессора. По умолчанию она скрыта и для того, чтобы увидеть ее, необходимо произвести некоторые манипуляции в реестре. Поэтому открываем редактор реестра (Win+R ->regedit), переходим в раздел HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\PowerSettings\54533251-82be-4824-96c1-47b60b740d00\75b0ae3f-bce0-45a7-8c89-c9611c25e100, находим параметр Attributes и изменяем его значение на 2.

 

После этого в окне настроек появится параметр «Максимальная частота процессора». Как следует из названия, этот параметр отвечает за ограничение максимальной частоты работы процессора, его значение задается в мегагерцах. По умолчанию значение параметра равно 0, что означает отсутствие ограничений.

 

Установим ограничение в 1500МГц и проверим результат. И действительно, ограничение работает и частота не поднимается выше указанного значения.

 

Надо понимать, что регулировка частоты работает так-же дискретно, как и в случае с состояниями. Например при выставлении максимальной частоты 1200МГц реальное ограничение будет в районе 1000МГц. Это неудивительно, ведь переключения все равно производятся между P-состояниями, причем выбирается ближайшее минимальное значение.

 

Изменять дополнительные параметры питания процессора можно и из командной консоли, с помощью утилиты powercfg. Для начала выведем все имеющиеся настройки питания командой:

powercfg /query

В полученных результатах надо найти требуемые параметры. Каждый раздел и параметр можно идентифицировать по идентификатору GUID или по псевдониму (алиасу). Например у группы настроек «Управление питанием процессора» GUID 54533251-82be-4824-96c1-47b60b740d00, а псевдоним SUB_PROCESSOR, у параметра «Максимальное состояние процессора» GUID 75b0ae3f-bce0-45a7-8c89-c9611c25e100 и псевдоним PROCTHROTTLEMAX.

 

Зная нужные алиасы или GUID-ы можно оперировать настройками. Так посмотреть значение параметра «Максимальное состояние процессора» можно такой командой (SCHEME_CURRENT означает текущую схему электропитания):

powercfg /query SCHEME_CURRENT SUB_PROCESSOR PROCTHROTTLEMAX

В командной значения параметра показаны в шестнадцатеричном виде, т.е. значение 0x00000064 означает 100%.

 

Обратите внимание, что в командной строке доступны настройки как для питания от сети, так и от батареи. В зависимости от требуемого варианта команда будет отличаться. Так за настройку питания от сети отвечает ключ /SETACVALUEINDEX, а для питания от батареи используется ключ /SETDCVALUEINDEX. Различие всего в одной букве, поэтому нужно быть внимательным и постараться их не перепутать. Для примера снизим максимальное состояние процессора для питания от сети до 50%:

powercfg /setacvalueindex CHEME_CURRENT SUB_PROCESSOR PROCTHROTTLEMAX 50

Проверим результат. Как видите, текущее значение составляет 0x00000032 (50%).

 

Итак, мы убедились в том, что регулировки частоты работы процессора в Windows 10 есть и даже работают. Но для того, чтобы получить от них положительный эффект, необходим грамотный подход. Первым делом необходимо определиться с тем, что вы хотите получить в результате —  поднять производительность, увеличить время автономной работы, снизить температуру или что-то еще. Затем надо выяснить основные параметры своего процессора, такие как частота шины, множитель, максимальная частота работы. И уже исходя из этого, опытным путем подобрать оптимальные для себя значения.

Вот как то так 🙂

windowsnotes.ru

Можно ли как-то разогнать свой процессор без дополнительных действий типа поднятия напряжения и других поднастроек?

ну а если немножко помыслить? от чего процессору быстрей работать если вы ничего менять ему не будете? измени шину общения на 1 порядок. с напряжением играться не советую.

если не делать ничего, то только метлой. можно еще руками над ним поводить и заклинание прочитать.

Ну и куда ты собрался соваться с таким уровнем знаний? Следующий вопрос будет: "Помогите, компьютер - кирпич! "?=) Кури мануалы для чайников: <a rel="nofollow" href="http://www.ixbt.com/cpu/cpuoverclock.html" target="_blank">http://www.ixbt.com/cpu/cpuoverclock.html</a> <a rel="nofollow" href="http://www.overclockers.ru/lab/20066.shtml" target="_blank">http://www.overclockers.ru/lab/20066.shtml</a>

Можно. Любой процессор можно разогнать без поднятия напряжений. Другой вопрос на сколько он разгонится.

Откройте меню Power Bios Setup, выберите CPU Frequency. Далее вам необходимо выбрать пункт, который, в зависимости от версии BIOS, может иметь названия CPU Host Frequency, CPU/Clock Speed или External Clock. Повысьте значение на 10MHz т. е. (если там 200Mhz ставь значение 210Mhz)- этим вы непосредственно разгоняете процессор. Снова сохраните настройки и загрузите операционную систему. Запустите программу S&M и в главном меню нажмите кнопку «Начать» . Если в результате проверки система покажет высокую стабильность, увеличьте значение CPU Host Frequency еще на несколько пунктов и снова проведите тест системы. Повторяйте действия до тех пор, пока не найдете оптимальный баланс между разгоном системы и ее стабильностью. Вы достигли цели - ваш процессор разогнан

Если мама не гавно какое нибудь за 500р то в ней есть в меню настроек частот процессора режимы разгона типа мануал, оверклок и т. п. Выбираешь оверклок, выбираешь на сколько процентов нужно разогнать сохраняешь и перезагружаешься. Готово!

ааа.. ты его взглядом разогнать хочешь) ) понятно)

touch.otvet.mail.ru


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.