Крепление кулера к материнской плате


виды, тонкости снятия и установки

Время чтения: 4 мин.

Современные процессоры работают при высокой нагрузке, поэтому для эффективной эксплуатации без троттлинга требуется организация правильного охлаждения. Большой популярностью пользуется проверенный временем метод – монтаж охлаждающего оборудования прямо на материнскую плату. Крепление нового кулера к материнской плате имеет свою специфику. Поэтому перед началом сборки персонального компьютера следует внимательно ознакомиться с основными правилами и полезными советами.

Основные требования к кулеру для процессора

Для обеспечения правильной работы всей системы кулер должен:

  • обеспечивать достаточный уровень охлаждения, обладая при этом низким термическим сопротивлением;
  • быть максимально совместимым. Другими словами, поддерживать возможность прикрепления к процессорам, выпускаемым различными производителями;
  • надежно фиксироваться. Владелец не должен сталкиваться с трудностями при установке и демонтаже;
  • обеспечить достаточное качество охлаждения кэш-микросхем;
  • иметь повышенный уровень износоустойчивости;
  • работать без вибраций;
  • помещаться по габаритам на любую известную материнскую плату.

Особенности конструкции креплений кулера

Существует ряд способов, позволяющих прикрепить к процессору новую систему охлаждения. Но перед тем как устанавливать кулер, настоятельно рекомендуется внимательно ознакомиться с разновидностями креплений.

Большой популярностью пользуется крепеж generic для кулера процессора am3 и am3+. Эта разновидность характеризуется наличием специальных защелок-распорок, обеспечивающих легкость монтажа и быстрое снятие при необходимости провести сервисное обслуживание (почистить внутренности от пыли, заменить термопасту и так далее). И что самое главное – продукция стоит весьма дешево.

При производстве крепежей используются различные виды материалов. Так, например, при установке вентиляторов можно воспользоваться креплениями, изготовленными из пластмассы. Чуть дороже обойдется продукция из металла. Существуют также комбинированные крепежи с одновременным использованием пластика и металла.

В некоторых моделях крепления уже интегрированы в конструкцию оборудования. Все, что нужно сделать в таком случае – это установить все ножки в штатные отверстия материнской платы, а затем прижать их с небольшим усилием до тех пор, пока не появится характерный щелчок.

Как установить кулер на процессор

При сборке уникальной конфигурации ПК всегда возникает необходимость установки процессорного вентилятора. В рамках проведения сервисного обслуживания, нанесения термопасты на процессор или замены центрального процессора охлаждение придется снимать. Все эти задачи являются весьма простыми. И нет никакой разницы в том, что именно установлено или подлежит установке – крепеж generic для кулера процессора am3 или am3+ либо крепежи другого типа. Для правильного выполнения операции достаточно придерживаться инструкций, приведенных ниже, а также быть максимально аккуратным. В противном случае повышается вероятность повреждения комплектующих.

Кулер от AMD

Для установки оборудования AMD используется комплект крепежей типа thermalright am4 type. Из-за его специфики установку осуществляют по несколько специфическому принципу. Здесь нет ничего сложного, главное – придерживаться последовательности действий, приведенной ниже:

  1. Сначала устанавливают процессор. Необходимо обратить внимание на расположение ключей и аккуратно смонтировать его. Также обращают внимание на прочие комплектующие – места подключения видеокарты или оперативной памяти. Важно, чтобы потом была возможность подключить питание, не перетягивая шлейфы. Если установленный вентилятор будет мешать правильному монтажу, следует заранее заняться установкой прочих комплектующих, и только потом переходить к монтированию охлаждения.
  2. Боксовый процессор обычно уже оснащен фирменным охлаждающим оборудованием. Осторожно вытаскивают его из коробки, ни в коем случае не прикасаясь к нижней части, потому что там уже имеется термопаста. Далее устанавливают систему охлаждения на основную плату.
  3. В заводском комплекте уже имеется радиатор с закрепленным кулером. Все это вместе крепится винтами. Перед тем как приступить к их монтажу, еще раз необходимо убедиться в отсутствии проблем с установкой (торчащие провода, шлейфы и так далее).
  4. Для подключения питания кулера на материнской плате находят разъем, возле которого присутствует надпись «CPU_FAN». Подсоединяют провод в разъем, заранее проверив, не цепляется ли он за лопасти.

Кулер от intel

В заводской процессор производитель уже интегрировал систему охлаждения, где имеется вентилятор или тепловые трубки кулера. По сравнению со способом, приведенным выше, в процессе монтажа есть определенные отличия, но без существенной разницы. Закрепление этого оборудования происходит посредством фиксаторов, расположенных в специальных пазах материнской платы. Все, что нужно сделать – выбрать оптимальное расположение и вставить каждый штырь в соответствующий разъем до щелчка.

Поместив каждое крепление в установочную скобу, остается только подсоединить провода питания, как указано выше. Распаковку нужно делать предельно осторожно, потому что в нижней части кулеров тоже имеется заводская термопаста.

Башенный кулер

Для повышения силы потока воздуха необходимо установить башенный кулер. Он характеризуется повышенной мощностью за счет огромных вентиляторов и ряда тепловых трубок. Последовательность действий следующая.

  1. Распаковывают содержимое коробки и собирают основание.
  2. Фиксируют заднюю стенку к нижней стороне материнской платы.
  3. Устанавливают на материнскую плату процессор и добавляют немного термопасты. Разглаживание не требуется, так как под весом кулера она распределится равномерно.

После подключения питания можно протестировать работу системы охлаждения.

krepezhinfo.ru

Как выбрать кулер для процессора [2018] | Периферия | Блог

Курс на повышение энергоэффективности и снижение нагрева комплектующих, по сей день поддерживаемый всеми производителями, а также медленное, но верное развитие штатных систем охлаждения, привели ко вполне закономерным результатам.

Так, если зайти сейчас в раздел «Системы охлаждения» в магазине ДНС, то можно обнаружить, что такие товары, как радиаторы для оперативной памяти или системы охлаждения для жёстких дисков присутствуют там в количестве одного-двух наименований, а системы охлаждения для видеокарт насчитывают в лучшем случае десяток позиций.

И в этом нет никакой вины магазина: зачем, например, пользователю менять радиаторы на оперативке, если модули DDR4 и со штатными радиаторами не перегреваются даже при напряжении в 1,38 вольта? Зачем прикручивать к жёсткому диску вентиляторы или устанавливать его в бокс-радиатор, если современные энергоэффективные модели даже без обдува еле перешагивают границу в 38 градусов?

Наконец, зачем кому-то сегодня менять штатный кулер на видеокарте, если фирменные СО вроде Gigabyte Aorus или Inno3D iChill обеспечивают более чем эффективное охлаждение и низкий уровень шума во всех возможных сценариях использования видеокарты?

Вместе с тем, ассортимент кулеров для центральных процессоров насчитывает, в зависимости от региона, от двух до трёх сотен позиций – и это ещё без учёта готовых СВО и компонентов для их сборки!

Впрочем, эта разница тоже вполне закономерна. Штатные «боксовые» кулеры по-прежнему устраивают далеко не всех – не говоря уж о том, что не все процессоры в BOX-варианте комплектуются кулерами!

Нередко разница в цене между BOX и OEM-комплектациями такова, что выгоднее оказывается приобрести процессор в OEM и более эффективный альтернативный кулер. Часть пользователей заранее планирует использовать более эффективные устройства охлаждения, чтобы добиться больших частот при разгоне процессора. Другая часть – хочет получить более низкие температуры и уровень шума, продлив тем самым жизнь процессору и собственным нервным клеткам. Ну а кого-то боксовые кулеры просто не устраивают с эстетической стороны, и это тоже оправдано.

Но, учитывая ассортимент кулеров для ЦПУ, выбор конкретной модели может стать затруднительным. Чтобы немного его упростить – воспользуйтесь данным гайдом.

Часто задаваемые вопросы

Q: А подойдет ли «название_кулера» к моей «название_материнской_платы»?

A: Вопрос совместимости кулера с материнской платой – это вопрос наличия у него креплений, подходящих под ваш сокет. Как правило, пространство вокруг разъёма для ЦПУ имеет регламентированные размеры, и допускает установку любого кулера, разработанного или адаптированного под этот сокет.

Безусловно, есть частные случаи, когда, например, близко расположенные конденсаторы мешают установить крепление, или же кулер упирается в радиаторы VRM – однако это именно частные случаи, которые можно узнать из обзоров вашей материнской платы или из опыта её владельцев на профильных форумах.

Q: А если кулер не поддерживает мой сокет?

A: «Не поддерживает» - понятие растяжимое. Если вы ориентируетесь только на паспортные характеристики, указанные производителем – делаете вы это очень даже зря.

Дело в том, что кулер-то вы ставите не на паспортные характеристики (на них в данном случае лучше положить), а на реальную материнскую плату. И совместимость тут – исключительно вопрос геометрии.

Так, все сокеты LGA 115X полностью идентичны по креплениям. Расстояние между монтажными отверстиями на материнской плате, форма пластины с тыльной стороны сокета, и сам принцип крепления не изменились со времён LGA 1156, так что никто не помешает вам поставить на Core i5-8600K боксовый кулер от Core i5-750, если у вас вдруг возникнет такое желание.

На картинке ниже сокеты LGA 1151_v2, LGA 1151 и LGA 1156 - угадаете, кто из них где?

Сокет LGA 2066, в свою очередь, по креплениям полностью повторяет LGA 2011-3, и тут тоже никто не запретит установить на новую платформу модель, предназначенную для старой.

На картинке ниже LGA 2066 найти не в пример проще - на нём крышка с надписью. Однако очевидно, что механизм крепления кулера ничем не отличается.

Сокет АМ4 в этом плане немного сложнее. Пластиковая рамка вокруг сокета полностью идентична предыдущим платформам – вплоть до совсем уж антикварных 754 и 939, так что установить на новый Ryzen 5 2600 можно даже боксовый кулер от Athlon 64 3000+ (хотя зачем?).

А вот монтажные отверстия в материнской плате расположены немного иначе – точнее, с другим расстоянием, чем на АМ3+ и более старых платформах. Поэтому кулерам, использующим винтовое крепление с бэкплейтом, потребуются новые крепёжные элементы.

Переходники для СВО Deepcool и Corsair наглядно иллюстрируют разницу между монтажными отверстиями сокета АМ4 и предыдущих платформ:

Сокет TR4 – это абсолютно новая платформа, ранее у AMD не было железа для сегмента HEDT. Крепления здесь не совпадают с АМ4 (впрочем, LGA 1151_v2 тоже ни разу не похож на LGA 2066), и охлаждать топовые Ryzen Threadripper можно только кулерами, предназначенными для Ryzen Threadripper.

Q: Так что делать, если у моего кулера нет креплений под новые платформы?

A: Проще всего – заглянуть в раздел «Крепления для кулера» в магазине ДНС. Продаются здесь те же самые фирменные крепления, что и в онлайн-магазинах производителей кулеров. Только они есть в наличии, и не нужно ждать их доставки по почте.

Впрочем, может оказаться, что крепления конкретно под ваш кулер в наличии не будет. В такой ситуации придётся запросить его у производителя. Как топовые бренды вроде Thermalright и Noctua, так и менее пафосные компании предлагают бесплатные «апгрейды» для своих старых продуктов. От вас потребуется только оформить запрос и оплатить почтовые услуги. Да, это дольше, чем просто купить крепление в магазине – но вполне вероятно, что дешевле покупки нового кулера.

В общем, не поленитесь посетить сайт производителя вашего кулера и выяснить, какие варианты для своих старых моделей он предлагает, и на каких условиях. Чаще всего, чтобы получить крепление, нужно просто предоставить отсканированные чеки на кулер и материнку. Может сойти и фото кулера на фоне материнской платы и чека на неё. А некоторые производители не потребуют от вас вообще никаких доказательств.

Q: Хорошо, с материнкой понятно. От чего ещё может зависеть совместимость кулера с моей системой?

A: Опять же – от его геометрических параметров. В первую очередь важна высота кулера, именно от неё зависит, поместится ли он в ваш корпус, или же не даст закрыть боковую крышку.

Как правило, высота кулера указана в его характеристиках – как в карточке товара ДНС, так и на сайте производителя. Высоту же, допустимую для вашего корпуса, узнать довольно просто – всего лишь нужно замерить расстояние от теплораспределительной крышки процессора до боковой крышки самого корпуса. Можно сделать это самостоятельно, можно понадеяться на точность измерений, сделанных производителем или авторами обзоров на оный корпус.

Во вторую очередь, важно расстояние между подошвой кулера и нижней гранью вентилятора или радиатора. Знать его необходимо затем, чтобы определить, какой высоты модуль оперативной памяти поместится в первый от сокета слот – чаще всего именно он перекрывается процессорным кулером. Хотя, если вы используете модули памяти стандартной высоты – для вас это не станет проблемой.

Увы, на этот параметр не обращают внимания ни производители, ни зачастую – авторы обзоров. Поэтому узнать, какая память поместится под кулер, можно только из опыта других владельцев… или воспользовавшись чертежом кулера, который некоторые производители публикуют в открытом доступе.

Также, если вы используете память с крупными радиаторами, и не можете переместить их в более отдалённые от сокета слоты – имеет смысл обратить внимание на кулеры со смещённым относительно центра рабочим телом радиатора. Благодаря «сдвигу» конструкции радиатор и вентилятор отдаляются от слотов оперативной памяти и перестают им мешать.

Примерно того же эффекта можно добиться, используя кулеры с узким телом радиатора, которые даже с установленными вентиляторами не достают до слотов оперативной памяти. Однако такие кулеры или окажутся достаточно высокими и габаритными в других измерениях (например, Thermalright True Spirit 140 со своими 172 мм в высоту и немалой шириной), или будут менее эффективны из-за меньшей площади теплообмена.

Q: А как определить, хватит ли кулера для моего процессора?

A: Определить именно «хватит ли» кулера, поможет такая характеристика, как TDP процессора. Некоторые до сих пор путают её то с энергопотреблением, то с реальной выделяемой тепловой мощностью, но в реальности она расшифровывается как Thermal Design Power и являет собой максимальное количество тепла, которое должна рассеивать система охлаждения чипа.

Грубо говоря, если TDP вашего процессора равняется 95 ваттам, а рассеиваемая мощность кулера – тоже 95 ватт, то этого кулера «хватит».

Но ведь кулер-то мы выбираем не просто для того, чтобы он обеспечивал работоспособность процессора! Иначе бы все использовали боксовые решения, и не задумывались об альтернативе.

Куда интереснее вопрос, сможет ли кулер обеспечить работоспособность процессора в разгоне, когда его реальное энергопотребление может превышать паспортное в полтора-два раза, какими при этом будут температуры, и насколько сильно он будет шуметь.

Тут, увы, не обойтись без чтения обзоров, в которых рассматривается работа кулера сразу в нескольких скоростных режимах, производятся замеры температур, уровня шума и сравнения с ближайшими конкурентами. Лишь на основе этого можно сделать аргументированный вывод о том, подходит ли вам тот или иной кулер, и стоит ли он тех денег, которых за него просят.

Q: Я хочу купить тихий кулер, будет ли «название_кулера» тихим, если его поставить на «название процессора»?

A: Уровень шума любого кулера на 80% зависит от рабочих оборотов его вентилятора. Оставшиеся 20% приходятся на размеры радиатора, межрёберное расстояние, наличие и характер аэродинамических оптимизаций, характеристики крыльчатки и подшипника вентилятора и так далее.

Что это означает в контексте озвученного выше вопроса?

То, что не только два схожих по конструкции девайса, но даже один и тот же кулер, но работающий на скорости в 1600 и 900 об/мин - это два принципиально разных набора акустических характеристик.

Следовательно, если кулеру не придется раскручивать вентилятор до максимальных оборотов, чтобы процессор работал при комфортных температурах – он будет тихим. Если же придется – увы, какими бы продвинутыми характеристиками не обладал его радиатор, против аэродинамики не попрёшь. Большие объёмы воздуха, на высокой скорости протискивающиеся сквозь плотно скомпонованный радиатор, будут вызывать заметный шум.

Таким образом, если вы хотите тихий кулер – для начала придётся выбрать эффективный кулер. Причём настолько, чтобы запаса его эффективности с лихвой хватало и на разгон, и на работу при повышенных температурах в летнее время.

Q: Чтобы кулер регулировал обороты вентилятора, обязательно покупать модель с четырёхпиновым разъёмом (PWM)?

A: Не обязательно.

Хотя PWM на сегодня практически стандарт, и вентиляторы такого типа встречаются даже в самых бюджетных моделях кулеров, любая уважающая себя материнская плата умеет регулировать обороты не только посредством ШИМ, но и старым добрым способом – изменяя подаваемое на вентилятор напряжение. Диапазоны оборотов при этом не меняются, да и вентилятору это ничем особым не грозит.

Gigabyte X470 Auros Gaming 7 и регулировка вентилятора на процессором кулере...

...и даже на разъёмах для корпусных вертушек!

Q: А вот я купил «название_кулера», а он постоянно на максимальных оборотах молотит, что делать?

A: Обороты вентиляторов регулируются материнской платой в зависимости от температур охлаждаемого элемента. В данном случае – процессора.

Если отбросить тот вариант, что вы не включили регулировку оборотов в биос материнской платы (или не переключились с регулировки по ШИМ на регулировку по напряжению), то очевидной причиной окажется то, что кулер попросту не справляется с охлаждением ЦПУ.

Причин этого может быть несколько. Отбросим, опять же, вариант того, что кулер слишком слабый для вашего процессора – тут комментарии излишни.

Если вы используете процессор с термопастой под крышкой – он вполне закономерно будет греться под серьёзной нагрузкой, и кулер на это повлиять никак не сможет: перегрев начинается сильно раньше него по цепочке передачи тепла. Материнская плата же, видя на процессорных ядрах 80+ градусов, вполне логично повышает обороты вентиляторов. И единственный выход здесь – настраивать собственную кривую оборотов, учитывающую характер процессора.

Если же под крышкой у вас припой, но процессор всё равно не слишком холодный, а кулер работает при повышенных оборотах – стоит задуматься о вентиляции в корпусе, а то и о приобретении более качественного/современного кейса. Увы, но каким бы холодным ни был процессор, и сколь бы эффективным ни был кулер, если им придётся работать в тесном и душном ящике эпохи первых стандартов ATX или тому подобном творении китайских мастеров – рано или поздно температура в корпусе вырастет, а вместе с ней – и скорость вращения вентилятора на кулере.

На что нужно обратить внимание при выборе кулера ЦПУ?

Сокет

Как уже говорилось ранее, этот момент нужно рассматривать только в контексте. Важен не сам сокет, а тип крепления.

Все сокеты LGA 115X в этом плане абсолютно идентичны: LGA 1151_v2, LGA 1151, LGA 1150, LGA 1155 и LGA 1156 используют одинаковое крепление, причём без разницы, крепится ли кулер при помощи пуш-пинов, или же через винтовое крепление с бэкплейтом. Абсолютно любой кулер, совместимый с одним из сокетов, будет совместим с остальными.

Сокет LGA 2066 идентичен LGA 2011-3, поэтому кулер можно демонтировать со старой платформы и спокойно продолжать пользоваться им на новой.

Все предыдущие сокеты AMD: AM3+, AM3, FM2+, FM2, AM2+, AM2, FM1 и 939 также имеют одинаковое крепление, причём без разницы, крепится ли кулер за штатную пластиковую рамку, или же через бэкплейт – монтажные отверстия в материнских платах также идентичны. Отличается здесь только сокет 754, но на сегодняшний день это совсем уж музейная ценность.

Сокет АМ4 обладает идентичной пластиковой рамкой, и к нему подойдёт любой кулер, крепящийся к ней при помощи прижимной скобы – причём не важно, указал ли производитель совместимость с этой платформой в характеристиках. А вот кулеры с бэкплейтом, увы, потребуют новых крепёжных элементов, которые можно докупить отдельно или заказать у производителя.

ID-Cooling SE-214X установлен на сокет АМ4...

...при том, что во официальных спецификациях его нет!

Сокет TR4 совместим только с самим собой, поскольку это новая платформа, не имеющая прямых предшественников. Но, учитывая долгий жизненный цикл, кулер, купленный под эту платформу сегодня, будет охлаждать далеко не одно поколение процессоров.

Материал основания

Этот аспект не столь важен для кулеров на тепловых трубках – они чаще всего представляют собой комбинацию алюминиевого основания и впрессованных в него медных (иногда никелированных) трубок, но это ничуть не мешает им показывать достойный уровень эффективности.

А вот для простых кулеров типа «аналог бокса» наличие медного основания в виде центральной тепловой колонны, медной пластины, к которой припаяны алюминиевые рёбра, или хотя бы простого медного диска, впрессованного в основание – серьёзный плюс. Таким простым и архаичным конструкциям переход на использование меди, теплопроводность которой в 1,6-1,7 раза выше, чем у алюминия, способен дать весьма ощутимые дивиденды.

Никелированная медь в качестве материала для теплосьёмников применяется в основном в кулерах топ-класса, где радует своей зеркальной поверхностью, но на эффективности особо не сказывается – её там обеспечивают другие характеристики.

Башенная конструкция (и конструкция вообще)

Современные (и не очень) кулеры для ЦПУ можно условно разделить на три основных типа в зависимости от их конструкции:

Кулеры типа «аналог бокса», даже не получившие собственного названия, представляют собой компактный радиатор со смонтированным сверху вентилятором. Могут иметь разную конструкцию: тут и центральные тепловые колонны с расходящимися от них лепестками, и выфрезерованные блоки, и чаши из спрессованных пластин. Различаются они и по материалам: помимо алюминия применяется медь, и даже тепловые трубки – уже нередкие гости в этом сегменте.

Такие кулеры всегда отличаются компактными размерами, относительно небольшой ценой и такой же невысокой эффективностью – достаточной, впрочем, для процессоров начального ценового сегмента, и немалой доли среднего ценового сегмента.

Причём у этих кулеров по факту немало достоинств: будучи дешевле боксовых, они могут отличаться и более высокой эффективностью, и пониженным уровнем шума. При этом они сохраняют небольшие размеры и остаются совместимыми с любой материнской платой, не вступая в конфликты с элементами в околосокетном пространстве.

Кулеры топ-конструкции называются так не потому, что занимают топовые строчки во всех тестах или всех прайсах. «Топ» здесь происходит от top-mount или top-flow.

Собственно, название и раскрывает суть: как и на кулерах предыдущего типа, вентилятор здесь монтируется сверху радиатора и дует в направлении материнской платы. В этом и заключается основное преимущество таких кулеров: охлаждается не только процессор, но и элементы VRM материнской платы. Что в отдельных случаях может оказаться крайне полезным – например, если вы используете процессор с энергопотреблением в 100 и выше ватт, а питание к нему подводится всего лишь по трём фазам.

В конструкции таких кулеров используются те же материалы и решения, что и в «башнях»: тепловые трубки, медные никелированные основания, рёбра с полным набором аэродинамических оптимизаций и так далее. Однако, в отличие от башен, топ-кулеры не могут безостановочно наращивать площадь поверхности теплообмена: их ограничивают и габариты материнских плат, и сам принцип конструкции. В результате топы всегда проигрывают башням по эффективости, а ценник на них зачастую сопоставим.

Подвидом топов можно считать кулеры для HTPC – это своего рода «особый жанр» в кулеростроении, где во главу угла ставится миниатюризация девайся, и в первую очередь – уменьшение его высоты. Общий принцип конструкции сохраняется, но за счёт низкопрофильных вентиляторов, уменьшения высоты радиаторов и других приёмов кулер получается вписать в самые компактные корпуса форматов mini-ITX и даже меньшие.

Собственно, в этом и заключается их основное преимущество. Использовать кулеры для HTPC в «полноразмерном» десктопном железе, конечно, можно, но никакой выгоды вы от этого не получите, а затраты окажутся совершенно не соответствующими итоговой эффективности охлаждения.

Наконец, кулеры башенной конструкции представляют собой «пакет» рёбер, нанизанных на расположенные вертикально или под небольшим углом тепловые трубки. В противовес топам, эти кулеры практически не обдувают пространство вокруг сокета, однако эффективность охлаждения самого ЦПУ с их помощью будет гораздо выше.

Дело в том, что башня в силу своей конструкции получает плюсы и от работы корпусных вентиляторов, и от естественной конвекции. Кроме того, башня позволяет доводить площадь поверхности теплообмена до впечатляющих значений: рёбра, возвышающиеся над элементами материнской платы, могут иметь практически любые габариты и форму. Да и вентиляторов на башню можно установить не один, а два или три, что также повысит её эффективность.

Не удивительно, что все флагманские модели кулеров для ЦПУ имеют башенную конструкцию – иногда даже из нескольких отдельных секций.

Количество тепловых трубок

В современных кулерах отвод тепла от основания радиатора и его передача непосредственно в рабочее тело осуществляется при помощи тепловых трубок. Трубки представляют собой замкнутые ёмкости с жидкостью, кипящей при сравнительно низких температурах.

Внутри трубки происходит постоянный и цикличный процесс испарения и конденсации жидкости. На «горячей» стороне трубки жидкость превращается в пар, затем – поднимается к её «холодным» частям, где конденсируется и стекает обратно. В процессе, разумеется, перенося тепло с охлаждаемого элемента.

Причем процесс переноса тепла происходит ощутимо быстрее, чем в случае цельного металла – теплопроводность тепловых трубок может превышать показатель чистой меди буквально на порядок.

Нужно понимать, что тепловая трубка не является охладителем: тепло она не рассеивает, а только отводит. Поэтому количество тепловых трубок само по себе, в отрыве от площади и конструкции радиатора, не является гарантом эффективности кулера. Тем не менее, количество трубок позволяет ранжировать кулеры следующим образом:

Без тепловых трубок обходятся кулеры начального уровня – те самые аналоги боксовых решений. Особой эффективностью они не отличаются, но не только из-за отсутствия трубок. Основной причиной выступает малая площадь теплообмена и архаичная конструкция кулера.

Ради справедливости стоит отметить, что без тепловых трубок обходятся кулеры, заменившие их испарительной камерой – по сути той же трубкой, но плоской и служащей в качестве основания теплосъёмника. Однако широкого распространения такое решение не получило в силу сложности и не самой выдающейся эффективности.

Одну или две тепловых трубки можно обнаружить в топах и башнях начального уровня: такие кулеры уже будут заметно эффективнее и, возможно, тише боксовых решений. Однако для серьёзного разгона топовых процессоров они уже не подойдут.

Три-четыре трубки – это практически стандарт для большинства кулеров среднего ценового сегмента. Такие решения в большинстве случаев имеют оптимальное сочетание цены и эффективности охлаждения – хотя, опять же, не только за счёт трубок.

Пять и более тепловых трубок – черта суперкулеров, способных охлаждать любые процессоры при минимальном уровне шума. Но и здесь работают в первую очередь не трубки, а решения, примененные в конструкции радиаторов. Трубки же лишь позволяют им работать так, как задумано инженерами.

Однако стоит обратить внимание и ещё на один факт: важно не только количество трубок, но и их диаметр. Например, при прочих равных характеристиках, кулер на четырёх трубках диаметром 8 мм может оказаться эффективнее кулера на шести трубках диаметром 6 мм.

Разъём для подключения вентиляторов и регулировка скорости вращения

Разъём для подключения вентиляторов может иметь либо три, либо четыре контакта. Второй случай означает, что вентилятор обладает регулировкой оборотов по методу ШИМ (PWM).

Многие до сих пор считают, что наличие разъёма 3-pin означает, что вентилятор всегда будет работать на максимальных оборотах. Однако это не так: в таком случае регулировка также доступна, но осуществляться будет посредством изменения подаваемого на вентилятор напряжения.

ШИМ (широтно-импульсная модуляция) предлагает другой метод: напряжение здесь остаётся на одной отметке, изменяется же скважность импульсов тока (соотношение периода повторения импульсов к длине отдельного импульса). В результате регулировка получается более плавной, а её диапазон становится шире: например, среди вентиляторов с ШИМ нетрудно обнаружить модели с минимальной скоростью в 800 об/мин и максимальной – в целых 3000 об/мин.

И всё же, вентилятор с ШИМ – не такое уж большое преимущество кулера, и не только потому, что регулироваться будет и трёхпиновый вариант. Вентилятор – это вообще по большому счёту расходник, который со временем (или по желанию) можно поменять, а потому явно не стоит ориентироваться только на него, забывая об остальных параметрах кулера. Но так или иначе, большинство современных кулеров оснащаются вентиляторами с ШИМ с завода, и проблема выбора постепенно исчезает сама собой.

Единственный остающийся вопрос: можно ли подключать вентилятор с разъёмом 4-pin в трёхпиновую колодку, и наоборот?

Да, можно. Но регулировка через ШИМ в таком случае работать не будет – что, впрочем, и очевидно.

Также стоит учесть, что некоторые кулеры предлагают «ручной» механизм регулировки оборотов. В качестве такового могут выступать как обычные переходники с резистором, понижающим подаваемое на вентилятор напряжение, так и подстроечные резисторы, позволяющие настраивать напряжение (и обороты кулера) самостоятельно и в довольно широких пределах.

Размеры и количество комплектных вентиляторов

Хотя, как говорилось ранее, вентилятор – это расходный материал, он во многом определяет и эффективность, и эксплуатационные характеристики кулера, а потому при выборе внимание на него стоит обращать в первую очередь.

Почему?

Прежде всего – по самой очевидной причине. Если вентилятор – это расходник, который со временем изнашивается, то значит, рано или поздно его придётся заменить. А на что именно – вопрос отнюдь не такой простой.

Среди вентиляторов для ПК насчитывается множество типоразмеров, но наиболее распространены следующие: 80x80 мм, 92x92 мм, 120х120 мм и 140х140 мм. Именно под их установку рассчитаны компьютерные корпуса, именно они применяются на радиаторах СВО и в блоках питания.

А это значит, что найти их можно практически всегда и везде. Причём выбор вентиляторов в этих типоразмерах максимально широк и включает модели на любой вкус и кошелек. В результате, если вам срочно потребуется заменить вентилятор на кулере, чтобы завтрашним утром успеть сдать работу – проблем с поиском подходящих вариантов не возникнет.

А вот с «редкими» типоразмерами вроде 65х65 мм, 70х70 мм, 75х75 мм, 100х100 мм всё не так просто: их, конечно, можно заменить наиболее близким по размерам аналогом, но крепление придётся изобретать самостоятельно, что не всем и не всегда удобно.

Исключением тут будут являться кулеры с вентиляторами нестандартного размера, но со стандартными посадочными местами: например, 130 мм с креплениями под 120 мм, или 150 мм с креплениями под 140 мм.

Но это то, что касается эксплуатационных характеристик. А как размер вентилятора влияет на эффективность кулера?

Самым прямым образом. Во-первых, чем шире размах лопастей – тем больший создается воздушный поток (хотя здесь не менее важна скорость вращения), и тем выше эффективность охлаждения. Во-вторых, больший типоразмер вентилятора автоматически предполагает и большие габариты самого радиатора – а значит, и большую площадь поверхности теплообмена.

Наконец, чем больше вентилятор – тем меньшие обороты ему понадобятся, чтобы создать воздушный поток одной и той же силы. К примеру, чтобы достичь производительности условного 120-мм вентилятора, вращающегося на 800 об/мин, не менее условному 92-мм вентилятору потребуются 1200 об/мин, а 80-мм – и все 2000 оборотов. Надо ли говорить, какой из вентиляторов в итоге окажется тише?

Количество вентиляторов в комплекте с кулером – критерий менее важный, но в отдельных случаях и он может иметь значение.

Большинство кулеров для ЦПУ, вне зависимости от ценового сегмента, поставляются с одним вентилятором – и, что интересно, большего им и не надо. Так, топы могут вообще не поддерживать установку второго вентилятора ввиду своих размеров и конструкции. А башни – обладать или узким радиатором, легко продуваемым одной вертушкой, или широким межрёберным расстоянием: в обоих случаях установка второго вентилятора ровным счетом ничего им не даст.

Реально важно количество вентиляторов для двухсекционных кулеров – они действительно получают качественный и заметный прирост от установки двух или даже трёх вертушек.

С другой стороны, если кулер поставляется в комплекте с двумя вентиляторами – второй можно использовать как запасной или установить в качестве корпусного, так что недостатком это никак не будет.

Критерии и варианты выбора:

Резюмируя вышесказанное, рекомендации по выбору кулера для процессора можно сформулировать следующим образом:

Если вы не хотите переплачивать за боксовый вариант процессора, и ищете недорогое решение, способное заменить собой комплектный кулер – [url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?p=1&i=1&mode=list&f=310-1200&f=6ymk]аналогов бокса найдётся немало, причём они могут быть и эффективнее, и тише фирменного решения. Желательно, разумеется, выбирать варианты [url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?p=1&i=1&mode=list&f=310-1200&f=a6bt-6yno&f=6ymk]с медным основанием - их эффективность будет заметно выше.

Есть ли смысл в данном случае обращать внимание на башенные кулеры из [url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?p=1&i=1&mode=list&f=310-1300&f=6ymj]начального ценового сегмента – решать уже вам. Они, конечно, будут эффективнее бокса, но не будут обдувать зону VRM, а для бюджетных систем это довольно важно.

Если вам нужен недорогой, но эффективный кулер для системы без разгона, или под разгон не самого горячего и прожорливого процессора – вам помогут [url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?order=1&stock=2&f=1200-3000&f=60-172]недорогие башни и топы. Преимуществом последних, опять же, станет обдув зоны VRM – и вовсе не стоит пренебрегать им, если ваш процессор в разгоне потребляет 140-150 ватт, а питается через четыре фазы!

В случае сборки HTPC в компактном, особенно в низкопрофильном корпусе, стоит обратить внимание на [url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?p=1&mode=list&stock=2&order=1&f=1200-3000&f=6ymk&f=60-172]специализированные решения, отличающиеся небольшой высотой. Согласитесь, мало толку от эффективного охлаждения, если оно мешает закрыть корпус. Низкопрофильные кулеры для HTPC предлагаются в довольно широком ассортименте.

[url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?p=1&stock=2&order=1&f=2500-8699&f=6ymj&f=6yns-6ynt-6ynu-6yny-6ynv]Эффективные башенные кулеры из верхней границы среднего и топового ценового сегмента позволят вам разгонять процессоры с любым энергопотреблением и тепловыделением, сохраняя при этом низкий уровень шума. Если вас ограничивает допустимая корпусом высота – выбирайте [url="https://www.dns-shop.ru/catalog/17a9cc2d16404e77/kulery-dlya-processorov/?p=1&mode=list&stock=2&order=1&f=2500-8699&f=6ymj&f=6yns-6ynt-6ynu-6yny-6ynv&f=26-160]относительно компактные модели. Если же нет – лимитом окажется только ваш бюджет.

club.dns-shop.ru

Как кулера гнут материнские платы? - PC-01

На первый взгляд может показаться, что кулер просто своим весом выворачивает текстолит, который за несколько лет просто провисает под консольной нагрузкой длинного и тяжёлого радиатора.

Преступление раскрыто?

Однако, если ввести в гугл или яндекс поиск запрос «прогнулась материнская плата», то можно увидеть совершенно неожиданные результаты, которые совершенно не отражают ранее написанную теорию.

Практика говорит о том, что теория не верна

Лёгкий алюминиевый блин выгнул материнскую плату… При этом у многих из вас есть реальный личный опыт использования кулеров которые и тяжелее, и у которых центр масс находится на большем расстоянии от материнской платы, чем у боксового кулера. И подобных остаточных деформаций у вас, скорее всего, не было.

А это значит, что материнская плата изгибается не весом радиатора кулера *звуки удивления на лице*.

Объяснить эти гравитационные аномалии, искажающие хрупкую ткань материи, нам поможет теоретическая механика и сопромат.

Проводим научно-инженерные изыскания

И для начала стоит внимательно осмотреть материнские платы, поскольку они могут нам помочь понять как, по мнению создателей плат, должна прилагаться нагрузка чтобы материнские платы не гнулись (несмотря на все теории заговоров по заложенному устареванию — производители плат точно не хотят чтобы в интернете видели их искорёженную продукцию).

И при осмотре вы можете заметить одну небольшую разницу между платами под intel и AMD процессоры.

В материнских платах для Intel процессоров есть несъёмный бэкплейт. А на платах для AMD бэкплейт съёмный и при установке кулеров с собственным бэкплейтом штатный не используется, тогда как в intel ставятся два бэкплейта.

Бэкплейт от платы с сокетом AM4

Учитывая, что законы физики для продукции intel и AMD работают одинаково, очевидно, должны быть какие-то причины на то, чтобы конструкция креплений была различной.

А различная она из-за того, что процессоры intel и AMD имеют различные форм-факторы.

Найди 479465454 отличий

Процессоры AMD имеют внешние продолговатые контакты (ножки), в то время как процессоры intel обходятся плоскими контактами. Можно долго спорить о том какой способ надёжнее, проще и дешевле, и о том сколько золота можно будет получить с процессоров intel и AMD через 30 лет скупая их килограммами как лом, но сейчас нам важно не это.

Важно то, что в случае AMD после установки процессора в сокет мы поворачиваем коромысло которое сбоку придвигает контактные группы к ножкам процессора (при этом трение иногда недостаточно большое и процессор можно выдрать из сокета кулером, если термопаста хорошо схватилась с крышкой процессора, не волнуйтесь, ножки на процессоре держатся крепче, чем в сокете, так что они не оторвутся, по крайней мере с первого раза, но перед тем как вы попытаетесь запихать процессор обратно — откройте коромысло сокета, иначе ножки вы всё же погнёте).

В случае с Intel, бокового прижима к ножкам нет, как и самих ножек, и при установке нам надо надавить на процессор так чтобы он прижался ко всем подпружиненным контактам сокета.

ГОСТ 30019.1-93 Застежка текстильная. Общие технические условия

Для осуществления надёжного контакта процессор надо не просто положить в сокет, а надавить на него, причём довольно сильно. Несмотря на то, что контакты тонкие и по отдельности гнутся без значительных усилий, для того чтобы поджать все 1100 с лишним «усиков» нужно немало усилий.

Запомните мои слова: если что-то не получается сломать — сожгите это. Если это не горит — полейте бензином и сожгите | © Этот компьютер

Специально для того чтобы прижим был достаточно сильным intel внедрили в конструкцию материнских плат сокетный зажим, именуемый сокетной рамкой.

Два выступа на сокетном прижиме давят на крышку процессора, которая равномерно распределяет усилие прижима на текстолит процессора для равномерного прижима его в сокет.

Если вы потеряли нить повествования, то я напомню, что мы сейчас говорим про изгиб материнской платы. И на этом этапе мы столкнулись с появлением первых механических воздействий на материнскую плату. И теперь представим как именно распределяется нагрузка, чтобы понять зачем нужен сокетный бэкплейт.

Черным показана материнская плата, зелёным и серым процессор, рыжим — сокетный прижим

Нагрузка от прижима действует в сторону процессора прижимая его к материнской плате. Но если вы учились в школе, то можете заметить, что на схеме что-то не так.

А не так тут — второй закон Ньютона, который гласит о том, что ускорение тела пропорционально равнодействующей всех сил, приложенных на тело.

Чтобы сокет вместе с процессором не улетели в космическое пространство необходимо обозначить силы реакции опоры. И самым главным тут является понять к чему они приложены. А приложены они к плате с обратной стороны, но не напротив места приложения сил, а в месте крепления сокетного прижима.

Если допустить, что жёсткость сокетного прижима намного выше жёсткости материнской платы (он металлический, а плата из текстолита) и пренебречь деформациями (сжатием) процессора, то представленную схему можно заменить на следующую:

Думаю, объяснять откуда тут могут взяться деформации материнской платы не надо.

И теперь предлагаю обратится к высоким технологиям и произвести расчёт нашей задачи на компьютере при случае отсутствия сокетного бэкплейта.

Приложена нагрузка в 200 Ньютонов (~20 Кг сил). Перемещения на анимации выше показаны в масштабе 200 единиц. Максимальное перемещение 0,217 мм. Это кажется не очень много, но если посмотреть на создаваемые напряжения, то можно в окрестности отверстий увидеть значения до 63 МПа, что для текстолита означает неминуемое разрушение.

Вид снизу

Чтобы материнская плата не развалилась в момент установки процессора в сокет, intel усиливает материнскую плату бэкплейтом.

Перемещения с бэкплейтом

Аналогичная нагрузка с бэкплейтом. Перемещения составили 0,009 мм.

Наибольшие напряжения приходятся на металлический бекплейт и достигают 58 МПа, что для металлов допустимо (например закалённая сталь марки 30ХГСА с отпуском в 200 градусов получит неупругие деформации, то есть останется «кривой» после снятия нагрузки при напряжении в 1450-1700 МПа в зависимости от методов охлаждения при отпуске, а прокатная Ст3 (самый дешман) держит до 350-450 МПа в зависимости от количества добавленного в неё пластилина). В наихудшей точке на материнской плате по расчёту выходит около 22 МПа. Если бы я не был таким ленивым и самостоятельно выставил опирания в модели, а не полагался на то что SolidWorks сам накрутит, то результат был бы ещё меньше (и намного). Но даже эти цифры уже допустимы для текстолита.

Весь этот рассказ нужен был чтобы вы понимали, что когда мы ставим процессор в сокет в intel мы давим на процессор, но при этом опираемся за материнскую плату на отверстия находящиеся сбоку от процессора, а не под самим процессором. Появляется некое плечо на котором действуют силы и изгибают плату.

Аналогично можете представить как на приспособление этого гидравлического пресса ставят материнскую плату и сверху на неё давят толкателем. Сокетный бэкплейт армирует материнскую плату, не позволяя нагрузкам разрушить текстолит.

Думаю, очевидно, что и бэкплейт кулеров выполняет точно такую же функцию.

То есть позволяет снять нагрузку с материснкой платы.

Для intel всё ещё интереснее. Дело в том, что бэкплейт кулера устанавливается на не материнскую плату, а на бэкплейт сокета, и если его жёсткости хватает чтобы не коснутся материнской платы при затяжке крепления, то материнская плата вообще не участвует в передаче нагрузки.

У креплений кулера специально сняты пластиковые проставки, которые нужны для предотвращения перетяжки кулера (чёрные штуковины на пупырке, лежащие на фоне платы — это как раз проставки кулера, которые ставятся на стойки крепления в вехней части материнской платы). Сняты они чтобы наглядней показать где и как происходят опирания креплений кулера.

И вот ещё крупно показан фрагмент предыдущего фото на котором видно, что бэкплейт не касается материнской платы. У платы видно как блестит металл стойки крепления кулера.

Изобразим схему крепления графически.

На изображении выше сокетный бэкплейт показан синим цветом, крепления кулера и бэкплейт кулера — красным, стойки стягивающие крепление кулера и бэкплейт кулера — ярко зелёным, основание кулера — фиолетовое (коричневые — условное изображение тепловых трубок).

Теперь расставим силы.

Крепление прижимает кулер к процессору сверху, а опирается это всё не на материснкую плату, а на сокетный бэкплейт. Таким образом — если бы материнской платы вовсе не было бы, то на работу крепления это никак не повлияло. Материнская плата в нагрузках никак не участвует. А это значит, что и изогнуть материнскую плату кулер с таким креплением не сможет.

А теперь вернёмся к изображению с боксовым кулером

Очевидно, что кроме показанного ранее случая есть и такие, в которых изгиб появляется.

Чтобы понять причину прогиба рассмотрим конструкцию крепления боксового кулера.

У штатных intel кулеров бэкплейта нет. И на сокетный бэкплейт они не опираются. У них есть пластиковые фиксаторы с внешними зазубринами состоящие из двух лепестков, которые надо просунуть в отверстия материнской платы. Затем между лепестков фиксаторов просовывается центральный стержень раздвигая лепестки. Зазубрины на этих лепестках после раздвигания не дают фиксаторам пройти в отверстие обратно. Так кулер и держится.

На изображении выше видно как лепестки «торчат» под платой.

Схематично изобразим данное крепление.

И по традиции добавим действующие силы

Сокетный бэкплейт нисколько не помогает в данной ситуации. Весь прижим трансформируется в нагрузку на материнскую плату. Нагрузка с платы не снимается годами и напряжения внутри текстолита постепенно изгибают текстолит.

Почему Intel делает такие крепления?

Куда хуже дела обстоят с AMD.

Штатный бэкплейт прекрасен. Его жёсткость на изгиб (да и на скручивание) настолько огромна, что на долю материнской платы не приходится почти ничего.

В попытках погнуть эту пластину можно нанести себе травму

Если кулер вкручивается в штатный бэкплейт или ставится в родные фиксаторы AMD, то можете спать спокойно, плату вы кулером не погнёте. Проблема в том, что большая часть кулеров предполагает, что вы должны открутить штатные скобки, снять бэкплейт и положить его куда-то далеко и через несколько лет попытаться его найти при продаже платы, понять что вы его потеряли, скинуть цену платы при продаже из-за некомплектности, и найти этот бэкплейт через 3 года убираясь в квартире.

Но проблема в том, что производители кулеров об AMD не сильно заботятся (доля продаж intel с 2011 по 2017 оправдывает их нежелание). Жёсткость креплений как правило достаточная для Intel (так как там есть зазор для деформации бэкплейта) недостаточна для AMD. То есть даже если у кулера есть бэкплейт — он снимает с платы недостаточно сильно нагрузку. Поэтому выбирая кулер для AM* платформ надо смотреть на то насколько сильно развито оребрение у бэкплейта, если кулер предполагает использование нештатного крепления от AMD.

Бывают конструкции кулеров которые в принципе сделаны неверно и не могут быть установлены так чтобы не прогибать материнскую плату. Данная статья — это текстовая адаптация моего старого видео:

В этом видео ошибки разработки крепления показаны на примере кулера EKL Alpenföhn Silvretta (не дешёвая штука, кстати).

И если в intel крепления пластиковые и нагрузка не очень сильная, то в данном кулере монтаж производится на винты вот так:

Слабенькое затягивание гаек двумя пальчиками штатным коротким ключиком выливается в вот это:

Тонкими красными линиями выделил то что стало из-за деформаций

Неподготовленный человек просто сделает на плате микротрещину или изгибом сломает сокет. В любом случае плата будет в утиль. Как подобные вещи вообще доходят до прилавка — не ясно. Но они до прилавка доходят, так что надо быть осторожными, если у вас подобное крепление.

Видео на YouTube канале "Этот компьютер"

InfoCAST #029 | Компьютерные новости февраля 2020

Как изменялись самые выгодные (цена/производительность) видеокарты разных годов (тесты) (2016-2020)

Как оплачиваются пошлины при покупке в иностранных интернет магазинах

Стоит ли покупать самые бюджетные GTX 1650 Super?

InfoCAST #028 | Необычные устройства на CES 2020 и др. новости января

Устаревание видеокарт NVIDIA vs AMD Radeon

AMD RADEON | Драйвера 2016 vs 2020 | RX 470

Intel, AMD и Nvidia на CES 2020

Уточнение к видео про VRM (про работу даблеров)

Новости канала "Этот компьютер" и важные объявления.

Железные ожидания от 2020 года

InfoCAST #027 | Весь "железный" 2019 год в одном видео

pc-01.tech

Особенности совместимости процессорных кулеров на примере систем охлаждения Zalman и материнских плат MSI

Данный обзор является обобщением личного опыта, общеизвестной информации и данных эмпирических измерений. Если вас не интересуют авторские теоретические измышления и общеизвестные факты, можно переходить сразу ко второй и третьей частям, где непосредственно приведены данные по совместимости конкретных моделей плат и кулеров между собой. Либо загляните в выводы, где в кратком виде суммированы основные тезисы данной статьи.

Постановка проблемы

Прочитав название можно подумать, что все проблемы совместимости между кулерами и материнскими платами банально исчерпываются тем, поддерживают ли крепления той или иной системы охлаждения установку на один из немногих актуальных сегодня процессорных разъемов. А фактически, большинство не стоковых кулеров сейчас являются универсальными в плане совместимости. Почему? Все очень просто. У компании AMD вообще ничего не менялось в креплениях со времен сокета АМ2. То есть все последующие разъемы AM2+, AM3, AM3+, FM1, FM2 и FM2+ совершенно идентичны в том, что касается установки кулеров.


Наиболее прогрессивный разъем Intel LGA1150 полностью унаследовал усилительную пластину и расположение крепежных отверстий (75х75 мм) от сокетов LGA1155 и LGA1156.
Особняком стоит только Intel LGA2011, на который далеко не у всех систем охлаждения найдутся подходящие крепления (да и не все кулеры к нему подойдут по эффективности).
Многие все еще используют разъемы Intel LGA775 или Intel LGA1366, но они постепенно выходят из эксплуатации в силу почтенного возраста. Таким образом, в сегменте «настольных» решений у нас, по сути, остается всего лишь три типа разъемов: Intel LGA115х, Intel LGA2011 и AMD. Сделать под них универсальное крепление совсем несложно. Но давайте все же разберемся детальнее, ведь материнская плата имеет на себе много других элементов, помимо процессорного разъема. Кроме конденсаторов, транзисторов и микросхем есть слоты расширения, слоты памяти, радиаторы транзисторов и чипсета, разнообразные разъемы для проводов. С каждым из этих элементов кулер способен конфликтовать по габаритам.
В результате поддержка креплением радиатора того или иного процессорного разъема не является гарантией совместимости кулера с материнской платой. Неужели нет единых стандартов, которых придерживаются производители материнских плат и систем охлаждения? Они конечно есть, но в них существует много аспектов, которые просто не оговариваются. А единственным на сегодня производителем систем охлаждения, который предельно ответственно подошел к вопросу совместимости кулера и материнской платы, является австрийский бренд Noctua.
Для каждого их изделия на официальном сайте предусмотрена соответствующая информация. Но и этого не всегда бывает достаточно. Поэтому предлагаю рассмотреть все возможные проблемы по отдельности.

Совместимость кулера с процессорным разъемом

Как уже упоминалось выше, первое на что стоит посмотреть при выборе кулера — это официальная поддержка того или иного процессорного разъема. Данная информация указывается на официальном сайте изготовителя и является 95% гарантией совместимости. Что же попадает в оставшиеся 5% случаев, которые могут привести к возврату товара в магазин? Туда попадают:

1) Конфликты по габаритам на лицевой стороне материнской платы при установке.

Как правило, основные неприятности доставляют массивные радиаторы силовых цепей, которые конфликтуют или непосредственно с радиатором процессора, или с элементами его крепления.

www.overclockers.ua

Как установить и снять кулер на процессоре

Каждому процессору, особенно современному, необходимо наличие активного охлаждения. Сейчас самым популярным и надежным решением является установка процессорного кулера на материнскую плату. Они бывают разных размеров и, соответственно, разных мощностей, потребляющие определенное количество энергии. В этой статье мы не будем углубляться в детали, а рассмотрим монтирование и снятие процессорного кулера с системной платы.

Как установить кулер на процессор

Во время сборки своей системы возникает потребность установить процессорный кулер, а если нужно выполнить замену ЦП, то охлаждение нужно демонтировать. В этих задачах нет ничего сложного, нужно лишь следовать инструкциям и выполнять все аккуратно, чтобы не повредить комплектующие. Давайте подробнее рассмотрим установку и снятие кулеров.

Читайте также: Выбираем кулер для процессора

Установка кулера от AMD

Кулеры от компании AMD оборудованы своеобразным креплением, соответственно, процесс монтирования тоже немного отличается от других. Оно осуществляется легко, требуется выполнить всего несколько простых шагов:

  1. Для начала следует установить процессор. В этом нет ничего сложного, просто учтите расположение ключей и делайте все осторожно. Дополнительно обратите внимание на другие комплектующие, например, на разъемы для оперативной памяти или видеокарты. Важно, чтобы после установки охлаждения все эти детали можно было без затруднений установить в слоты. Если кулер будет мешать этому, то лучше заранее поставить детали, а потом уже заняться монтированием охлаждения.
  2. У процессора, приобретенного в боксовом варианте, в комплекте уже имеется фирменный кулер. Аккуратно достаньте его из коробки, не прикасаясь к нижней части, ведь туда уже нанесена термопаста. Установите охлаждение на материнскую плату в соответствующие отверстия.
  3. Теперь требуется закрепить кулер на системной плате. Большинство моделей, идущих в комплекте с ЦП от AMD, крепятся на винты, поэтому их нужно поочередно вкрутить. Перед началом вкручивания еще раз убедитесь, что все стоит на своих местах и плата не будет повреждена.
  4. Охлаждению для работы необходимо питание, поэтому нужно подключить провода. На материнке найдите разъем с подписью «CPU_FAN» и выполните подключение. Перед этим расположите провод удобно, чтобы его не цепляли лопасти во время работы.

Установка кулера от Intel

У боксовой версии процессора Intel в комплекте уже имеется фирменное охлаждение. Способ крепления немного отличается от рассмотренного выше, однако кардинальной разницы нет. Данные кулеры крепятся на фиксаторы в специальные пазы на материнской плате. Просто выберите подходящее расположение и поочередно вставьте штыри в разъемы до появления характерного щелчка.

Остается подключить питание, как это было описано выше. Обратите внимание, что на кулеры от Intel также нанесена термопаста, поэтому распаковку осуществляйте осторожно.

Установка башенного кулера

Если мощности стандартного охлаждения не достаточно для обеспечения нормальной работы CPU, потребуется установка башенного кулера. Обычно они мощнее благодаря большим вентиляторам и наличию нескольких теплотрубок. Установка такой детали требуется только ради мощного и дорогостоящего процессора. Давайте подробно разберем этапы монтирования башенного процессорного кулера:

  1. Распакуйте коробку с охлаждением, и следуя вложенной инструкции, выполните сбор основания, если это нужно. Внимательно ознакомьтесь с характеристиками и габаритами детали перед ее покупкой, чтобы она не только встала на материнскую плату, но еще и поместилась в корпус.
  2. Выполните крепление задней стенки на нижнюю сторону материнской платы, установив ее в соответствующие крепежные отверстия.
  3. Установите процессор и капните на него немного термопасты. Размазывать ее не обязательно, так как она равномерно распределится под весом кулера.
  4. Читайте также:
    Установка процессора на материнскую плату
    Учимся наносить термопасту на процессор

  5. Выполните крепление основы на материнскую плату. Каждая модель может крепиться по-разному, поэтому лучше обратиться в инструкцию за помощью, если что-то не получается.
  6. Остается прикрепить вентилятор и подключить питание. Обратите внимание на нанесенные маркеры — они показывают направления потока воздуха. Он должен быть направлен к задней стенке корпуса.

На этом процесс монтирования башенного кулера окончен. Мы еще раз рекомендуем изучить конструкцию материнской платы и устанавливать все детали в таком порядке, чтобы они не мешали при попытке монтирования других комплектующих.

Как снять процессорный кулер

Если требуется выполнить ремонт, замену процессора или нанести новую термпопасту, то всегда сначала нужно снять установленное охлаждение. Данная задача очень проста – пользователь должен открутить винты или разжать штырьки. Перед этим необходимо отключить системный блок от питания и вытащить шнур CPU_FAN. Подробнее о демонтаже процессорного кулера читайте в нашей статье.

Подробнее: Снимаем кулер с процессора

Сегодня мы подробно рассмотрели тему монтирования и снятия процессорного кулера на защелках или винтах с материнской платы. Следуя приведенным выше инструкциям, вы запросто сможете выполнить все действия самостоятельно, важно только все делать внимательно и аккуратно.

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

Сломалось крепление кулера процессора? Не беда!


Сломалось крепление кулера процессора? Не расстраивайтесь! Сейчас Вы узнаете, как можно своими руками починить крепление и восстановить работу Вашего любимого компьютера.

Доброго времени суток. Хотелось бы поделиться, как можно исправить неполадку крепления боксового кулера процессора к материнской плате.

Чаще всего поломка заключается в следующем: отламывается пластиковое крепление защелок. Ее я заменил на быстросъемное резиновое соединение для стандартных вентиляторов от компьютера (Сразу оговорюсь, для монстров охлаждения следует использовать винты и гайки), и металлическую шайбу, у меня это обжимное крепление.

Красным выделено место отрезания. На фото материнской платы видно, что диаметр отверстия в ней совпадает с диаметром нашего крепления, поэтому никаких проблем при монтаже не должно возникнуть. Шайба использовалась для того, что бы наше соединение не провалилось в отверстие крепления кулера.

Остается просунуть наше крепление кулера процессора в материнскую плату и вытянуть с другой стороны до фиксации.

тест

В итоге получилось следующее: достаточно плотное прилегание подошвы кулера к процессору и как следствие — достойное охлаждение.

Если прилегание неплотное, то можно изготовить пластиковую шайбу из подручных материалов и подложить ее с обратной стороны материнской платы компьютера. В итоге на конечном фото видно, что есть деформация материнской платы, и значит что соединение очень плотное. Но я менял все «родные» крепления на резиновые и в итоге моя времянка работает больше года на компьютере сына)))

Всем удачи и Бог в помощь)))

Автор статьи «Ремонт крепления кулера процессора» — Александр Шутов. 

Дорогие читатели, если у Вас есть наработки по ремонту компьтерной техники или любые другие идеи которыми Вы хотите поделиться с остальными читателями Мира Самоделок, присылайте их на нашу почту:  [email protected]  Все работы будут опубликованы с указанием Вашего авторства!

Смотрите так же статьи из раздела самоделки для пк:

samodelka.info

Установка кулера на процессор

Обновлено – 2017-02-16

Установка кулера на процессор не столько трудная, сколько очень ответственная операция при сборке компьютера. Любой процессор нуждается в хорошем охлаждении. Поэтому необходимо правильно подобрать систему охлаждения. Не всякий кулер подойдет к Вашей материнской плате. Он должен также соответствовать сокету (разъему) на материнской плате, иначе вы его просто не установите.

Установка кулера на процессор

Для разных микропроцессоров выпускают и разные системы охлаждения. Делается это конечно не для нашего удобства, а в целях выживания фирм в жестокой конкуренции. Потому и меняется компьютерное оборудование «со свистом».

Вместо того, чтобы улучшать уже сделанное, придумывают все новое и новое, что бы конкуренты не захватили рынок продаж. А мы только успеваем менять компьютеры, потому, что все комплектующие не столько устаревают, сколько меняют свои формы и методы подключения. Начнешь менять одну деталь, а она уже тянет за собой все остальное.

Поэтому прежде, чем что-то менять хорошенько почитайте или поинтересуйтесь у специалистов, что еще вам придется менять «паровозом».

Если вы решили заняться ремонтом или сборкой компьютера, то почитайте эти статьи:

Так, если материнская плата имеет Socket 775 то и кулер должен быть Socket 775. Правда сейчас уже появились универсальные кулеры. Они намного дороже, и установка их настолько головоломная, что не каждый новичок справиться с этим.

Мы же выберем простой и дешевый кулер.

Кулер Socket 775

Материнская плата с Socket 775

Посмотрите внимательно на эту фотографию материнской платы. Видите по углам от сокета с процессором белые точки? Это отверстия для крепления кулера. В них он и будет крепится к материнской плате.

Опять же повторюсь, если вы сомневаетесь, что сможете сами правильно подобрать необходимый куллер, то лучше посоветуйтесь со специалистом или продавцом. Сразу же спросите, есть ли для него необходимая термопаста.

Она необходима для плотного прилегания радиатора к кристаллу процессора. Без неё нельзя обойтись. Часто она прилагается к кулеру, а бывает, и нет. Так, что лучше сразу спросить об этом продавца, чем в последний момент искать её.

Прежде, чем заняться ремонтом или модернизацией своего компьютера – не забывайте сначала все обесточить и снять с себя статическое электричество.

Бывает, что паста уже нанесена на радиатор. Всё равно я советую вам тщательно стереть её спиртом или одеколоном и нанести новую.

И так, процессор установлен и теперь необходимо, установить на него систему охлаждения. Берем радиатор и наносим на его нижнюю часть тонкий слой термопасты. Именно тонкий. Не усердствуйте и не думайте, что необходимо нанести всю пасту, которая прилагается к Вашему охладителю.

Возьмите буквально каплю и разотрите её пальцем круговыми движениями по нижней части радиатора, стараясь, чтобы она покрыла всю поверхность ровным слоем. Я обычно наношу ещё тонкий слой пасты и на сам процессор (а некоторые, нанося её только на куллер или микропроцессор).

После того, как нанесли термопасту, аккуратно ставим радиатор на микропроцессор и закрепляем его запорным рычажком, или специальными защелками, расположенными с четырех сторон.

Главное, не торопитесь, и не волнуйтесь. У вас всё получиться. Не прилагайте больших усилий. Лучше снимите радиатор и хорошенько посмотрите, что Вам мешает. Иначе Вы можете повредить кристалл процессора. Он очень чувствителен к неравномерной механической нагрузке и может просто потрескаться или расколоться.

Вообще, перед тем как устанавливать радиатор внимательно изучите его крепления, особенно если они пружинные с четырех сторон. Попробуйте, как они фиксируются без установки на процессор. Лучше их фиксировать по диагонали. Сначала по одной диагонали потом по другой.

Не забудьте после всех процедур подключить проводок кулера к материнской плате. Куда именно его подключать посмотрите в вашей инструкции на материнскую плату.

И ни в коем случае не переносите материнскую плату, держа её за радиатор. Это грубейшая ошибка многих начинающих ремонтников.

Ну вот, вроде бы и всё. Установка кулера на процессор закончена.

 

На главную

Это тоже интересно!

Понравилась статья — нажмите на кнопки:

    

moydrygpk.ru

Крепление Кулера - Комп'ютери та комплектуючі

Звичайні оголошення

Знайдений 49 оголошень

Знайдений 49 оголошень

Хочете продавати швидше? Дiзнайтесь, як

Клипсы крепления кулера, защелки intel s775,1156,1155,1150

Комп'ютери та комплектуючі » Комплектуючі та аксесуари

7.54 грн.

Макіївка Вчора 17:32

Рамка AM2 / AM3 / AM4 крепления кулера для материнок

Комп'ютери та комплектуючі » Комплектуючі та аксесуари

OLX
Доставка

Гарантовано отримуйте товар, або гроші назад на карткуДетальніше.

Як купувати безпечно

99 грн.

Нововолинськ 28 лют.

Рамка крепления кулера AMD Intel Socket 775 1150 1155 1156 1151

Комп'ютери та комплектуючі » Комплектуючі та аксесуари

OLX
Доставка

Гарантовано отримуйте товар, або гроші назад на карткуДетальніше.

Як купувати безпечно

50 грн.

Новомосковськ 28 лют.

Новые клипсы, комплект 4шт крепления кулера lntel

Комп'ютери та комплектуючі » Комплектуючі та аксесуари

OLX
Доставка

Гарантовано отримуйте товар, або гроші назад на карткуДетальніше.

Як купувати безпечно

32 грн.

Олексіївка 28 лют.

Крепление кулера процессора CPU

Комп'ютери та комплектуючі » Комплектуючі та аксесуари

OLX
Доставка

Гарантовано отримуйте товар, або гроші назад на карткуДетальніше.

Як купувати безпечно

50 грн.

Київ, Оболонський 26 лют.

Крепление для CPU-кулеров Noctua на платформу Intel s115х (NM-i115x)

Комп'ютери та комплектуючі » Комплектуючі та аксесуари

350 грн.

Харків, Жовтневий 26 лют.

www.olx.ua

Как правильно установить вентиляторы (кулеры) в корпус компьютера

Одним из способов снижения температуры компьютерных комплектующих является установка дополнительных вентиляторов. С их помощью можно усилить движение воздуха и как следствие улучшить охлаждение. В данной инструкции мы расскажем, как правильно подобрать и установить вентиляторы (кулеры) в корпус компьютера.

Выбор мест для установки вентиляторов

Если вы задумались об установке дополнительных вентиляторов в корпус компьютера, то для начала вам нужно определиться с местами, куда вы будете их устанавливать. Чтобы выбрать правильные места необходимо понимать, как двигаются потоки воздуха внутри компьютера. Дело в том, что нагретый воздух под влиянием конвекции сам поднимается к верхней части корпуса. Этот эффект можно использовать для улучшения охлаждения. Если кулеры не будут противостоять естественной конвекции, а наоборот усиливать ее поток, то охлаждение будет более эффективным.

Существует стандартная схема установки кулеров, которая принимает во внимание естественное движение воздуха:

  • кулеры на вдув размещаются на передней, нижней и боковой стенке корпуса;
  • кулеры на выдув на верхней и задней стенке корпуса;

При такой схеме установки вентиляторов не нарушается естественный поток воздуха, а вентиляторы не разгоняют горячий воздух по корпусу, а выдувают его наружу. Более наглядно это показано на картинке внизу.

Не стоит недооценивать данную схему размещения вентиляторов. Она используется уже очень давно и многократно проверена. Если вы решите от нее отойти и устанавливать охлаждение по-своему, то не исключено, что вы не только не снизите температуры, но наоборот повысите их. Например, если в верхней части корпуса разместить вентиляторы не на выдув воздуха, а на вдув, то это немного снизит температуру процессора, но заметно повысит температуру видеокарты, жестких дисков и чипсета.

Используя эту схему, определите, где в вашем корпусе недостаточно вентиляторов и где вы можете их установить. Например, если в корпусе установлен только один вентилятор на выдув, то вы можете добавить несколько на вдув. Для организации хорошего охлаждения обычно достаточно 2-3 вентилятора.

Измерение посадочных мест под вентиляторы

После того как вы определились с размерами вентиляторов, нужно выбрать их правильный размер. Дело в том, что размер кулера влияет на его производительность и уровень шума, который он производит. Чем больше кулер, тем больше воздуха он может через себя пропустить за единицу времени и тем тише он работает. Поэтому не стоит экономить и всегда нужно устанавливать самые большие кулеры из тех, что помещаются в корпус вашего компьютера.

Важно понимать, что разные корпуса рассчитаны на использование кулеров разных размеров. Более того, разные места для установки могут быть рассчитаны на разный размер. Например, на передней стороне корпуса могут быть посадочные места размером 140×140 мм, а на задней стороне корпуса 120×120 мм или наоборот. Поэтому перед покупкой нужно изменить посадочные места и определить размер кулеров, которые вам необходимы.

Самый простой и надежный способ измерения посадочных мест для кулеров — это измерение между центрами крепежных отверстий. Замерив эти расстояния, вы сможете определить размер кулера опираясь на значения приведенные ниже.

Расстояние между крепежными отверстиями и размер кулера:

  • 32 мм — 40×40 мм
  • 50 мм — 60×60 мм
  • 71.5 мм — 80×80 мм
  • 82.5 мм — 92×92 мм
  • 105 мм — 120×120 мм
  • 125 мм — 140×140 мм
  • 154 мм — 200×200 мм

Определение способа подключения кулеров

Также не следует забывать о том, что кулеры имеют разные разъемы для подключения и могут подключаться либо к материнской плате компьютера либо напрямую к блоку питания.

На данный момент используется три основных варианта подключения, это:

Разъемы 3-pin и 4-pin предназначены для подключения к материнской плате, а разъем MOLEX подключается к блоку питания.

От способа подключения зависит, сможете ли вы управлять скоростью вращения вентиляторов программным способом (без использования реобаса). Нормальное управление есть только на кулерах с разъемов 4-pin. В этом случае можно установить определенные обороты в зависимости от температуры процессора. Некоторые материнские платы позволяют управлять и при подключении через 3 pin. Ну а подключение с помощью MOLEX вообще исключает управление оборотами, так как питание поступает напрямую от БП.

Поэтому желательно изучить инструкцию к материнской плате, для того чтобы определить количество разъемов под вентиляторы, количество контактов (3 или 4-pin), а также возможность управления через 3-pin подключение. Если все разъемы на материнской плате уже заняты, то дополнительные кулеры можно подключить с помощью разветвителя.

Установка вентиляторов в корпус компьютера

Непосредственно сама установка кулера в корпус компьютера не представляет ничего сложного. Нужно выключить компьютер, полностью отключить питание и снять боковую крышку.

Кулер устанавливается с внутренней стороны корпуса, после чего закрепляется 4 винтами с внешней стороны. Главное, не перепутать сторону, с которой кулер выдувает воздух. Для этого на его корпусе обычно есть стрелка, которая указывает направление воздуха.

После установки кулера в корпус компьютера его необходимо подключить к материнской плате (в случае разъемов 3 и 4-pin) или к блоку питания компьютера (в случае MOLEX). На разъемах 3 и 4-pin есть специальные выступы, которые не позволят подключить их неправильно.

На этом установка вентиляторов в корпус компьютера завершена, можно собирать корпус и проверять.


Посмотрите также

comp-security.net

Радиатор процессора компьютера – как переделать систему крепления

Внезапно перестал включаться компьютер, вскрытие показало наличие вздувшегося электролитического конденсатора по цепи питания +5 В на материнской плате. Пришлось заняться заменой конденсатора.

Когда извлек материнскую плату, то был крайне удивлен ее сильному прогибу в зоне установки процессора. Приложил линейку и понял, что если не принять срочные меры, то скоро придется покупать новый системный блок.

Почему прогибается материнская плата

Мне уже были известны случаи отказа материнской платы из-за прогиба. Так как токопроводящие дорожки на материнской плате очень узкие и тонкие, то они растягиваются и в них образуются микротрещины. От перепадов температуры за счет линейного расширения материалов, постепенно микротрещины превращаются в трещины. Дорожка разорвана, и плата перестает работать. Вначале компьютер начинает изредка зависать, затем все чаще и чаще и наступает момент, когда перестает работать навсегда.

Ремонту такая материнская плата не подлежит, так имеет до семи слоев, и найти разорванную дорожку практически невозможно. Приходится заменять новой, и возникают дополнительные затраты, так как скорее всего установленные на старой материнской плате процессор, модули памяти и другие карты на новую материнскую плату не установятся, так как там уже нет нужных разъемов. На практике приходится покупать новый системный блок, хотя старый был вполне подходящим для Ваших задач.

При изучении устройства прижима радиатора к процессору стало ясно, что деформация материнской платы происходит по причине неграмотной (или сделанной умышленно) его конструкции. Радиатор прижимается к процессору, а отверстия зацепления для создания усилия прижима радиатора к процессору находятся тоже на печатной плате на удалении от места установки процессора. Таким образом, процессор на плату давит в одну сторону, а точки зацепления радиатора в противоположную. Это и приводит к деформации материнской платы.

Для исключения деформации, необходимо, чтобы действующая и противодействующая силы, которые прикладываются к материнской плате с разных сторон находились на одной оси, это требование и явилось отправной точкой модернизации конструкции прижимного устройства радиатора, не деформирующего материнскую плату.

Как видите, пластмассовые фиксаторы заменены подпружиненными винтами, но не только в этом отличие. В конструкции применена металлическая пластина и диэлектрический подпятник. В пластину вкручиваются винты, а подпятником пластина упирается вместо установки процессора. Таким образом, условия для деформации материнской платы исключены.

Модернизация системы крепления радиатора процессора

На фотографии Вы видите модернизированное прижимное устройство в собранном виде. Конструкция его настолько проста, что ее под силу повторить практически любому человеку с минимальными навыками обработки материалов.

Сначала изготавливается металлическая пластина из стали или алюминиевого сплава размером 85×85 мм толщиной 3 мм. Толщина пластины обусловлена необходимой механической прочностью. Размеры справедливы для прижимного устройства материнской платы GIGABYTE GA81915P-G. Симметрично по углам пластины сверлятся четыре отверстия диаметром 3,5 мм на расстоянии 72 мм по периметру друг от друга и в них нарезается резьба М4.

Далее изготавливается квадратная пластина из диэлектрика размером 50×50 мм толщиной 1,5 мм. Толщина пластины определяется зазором, который необходимо обеспечить для исключения касания металлической пластиной паек на материнской плате. Я вырезал из фольгированного стеклотекстолита ножницами по металлу.

Остается склеить любым подходящим клеем или двусторонним скотчем пластины между собой и конструкция готова. Перед склейкой необходимо приложить на место пайки процессора и посмотреть, не будут ли мешать выступа паек или запаянные радиоэлементы. Если мешают, то в изоляционной пластине нужно сделать выборку или просверлить в местах касания отверстия. Пластина должна лечь на плату всей плоскостью. После склейки необходимо опять приложить полученную комбинированную пластину и проверить, не будет ли металлическая часть касаться мест паек электролитических конденсаторов. Их, как правило, вокруг процессора много. Все выступающие ножки нужно обрезать бокорезами. Осталось подобрать винты, пружины и шайбы.

Готовых пружин на сжатие нужного диаметра и жесткости найти не удалось и пришлось доработать наиболее подходящую пружину на растяжение. Можно конечно обойтись и без пружин, поставив пластмассовые шайбы, но тогда сложно получить идеальное прилегание радиатора к поверхности процессора. Пружины я сделал из одной пружины от растяжки заземляющего провода кинескопа монитора. Такие пружины используются в любом кинескопном телевизоре. Внутренний диаметр такая пружина имеет 5 мм, диаметр провода около 0,5 мм.

Для того, чтобы растянуть пружину нужно продеть в ее кольца на концах две отвертки или взяться двумя плоскогубцами и прилагая небольшое усилие очень медленно тянуть в стороны до тех пор, пока не почувствуете, что металл «поддался». Отпускаете пружину и смотрите, что получилось. Шаг намотки пружины должен стать около 1 мм, если меньше, операцию повторяете. В случае промашки, в кинескопе обычно четыре пружины, так что есть на чем потренироваться. Растянутую пружину разрезают кусачками на отрезки длиной в восемь витков.

Осталось подобрать четыре винта с резьбой М4 длиной 20 мм.

Я использовал красивые винты, которыми затягиваются хомуты крепления отклоняющей системы на горловине кинескопов. Но подойдут любые, только придется ставить стандартные шайбы с каждой стороны пружины.

Комплект крепежа для модернизации прижимного устройства радиатора процессора подготовлен. Все готово для установки нового устройства крепления, но сначала нужно демонтировать старое.

ydoma.info

Как выбрать корпусные вентиляторы [2018] | Периферия | Блог

Воздух – по сути идеальный хладагент, если рассматривать не только чистую эффективность, а всю совокупность характеристик. Он доступен абсолютно везде и в любых количествах, не требует особых условий для транспортировки и хранения в отличие от того же сухого льда или жидкого азота. А системы охлаждения, использующие воздух, отличаются сравнительной простотой, малой стоимостью и гораздо большей отказоустойчивостью даже на фоне жидкостных систем.

Поэтому вовсе не удивительно, что с самого момента своего появления и по сей день персональные компьютеры и другая «домашняя» электроника использует для охлаждения и поддержания работоспособности именно воздух.

Основным элементом системы воздушного охлаждения является, разумеется, радиатор: именно он в первую очередь определяет эффективность кулера, именно он обладает наибольшей долговечностью, порой переживая не один тюбик термопасты и не один десяток вентиляторов. Тем не менее, сами вентиляторы также имеют немаловажное значение – от их характеристик зависит и эффективность обдува радиатора, и уровень шума, издаваемого системой охлаждения.

К слову, термин «корпусной вентилятор» ни в коем смысле не ограничивает сферы применения девайсов. Вертушки стандартных типоразмеров могут использоваться для замены штатных вентиляторов на кулерах ЦПУ и видеокарт, для установки на радиаторы СВО, монтажа в корпусы лазерных принтеров, роутеров, домашних NAS, а также для принудительного обдува чипсетов и VRM материнских плат.

Разумеется, все это делает вопрос выбора вентилятора отнюдь не праздным, а потому снова постараемся дать ответы на наиболее распространенные вопросы и рекомендации по выбору подходящего устройства.

Часто задаваемые вопросы

Q: Нет, ну с кулерами-то понятно. А в корпусе-то мне зачем вентиляторы? Я вот боковую крышку открою, и будет все нормально охлаждаться!

A: Не будет.

Точнее, кулеры процессора и видеокарты, получив приток свежего «забортного» воздуха, могут работать в какой-то степени эффективнее, что и создает иллюзию нормального охлаждения. Однако, кроме процессора и видеокарты, в корпусе есть и другие комплектующие, и вот им как раз от такого метода лучше не станет.

Суть в том, что корпус ПК – это по сути некий резервуар, рассчитанный на постоянный приток свежего воздуха снаружи и отток уже нагретого. Схематично на примере современного корпуса формата ATX это можно представить так:

Как можно видеть, циркуляция воздушных масс постоянна: корпус захватывает холодный воздух через переднюю и нижнюю панель, далее же он движется по направлению к вытяжным вентиляторам в верхней части, попутно охлаждая все встречающиеся на пути комплектующие.

Причем буквально – все. Воздух – это газ, а газ, попадая в замкнутый объем, стремится заполнить все доступное место, за счет чего охлаждает и жесткие диски, и чипсет материнской платы, и ее же VRM, и прочие мелкие элементы, не имеющие радиаторов или прямого обдува. Нагретый же воздух не застаивается внутри, тем самым постепенно повышая общую температуру, а выбрасывается наружу вытяжными вентиляторами.

Если же циркуляция воздуха в системном блоке отсутствует, все происходит с точностью до наоборот. Материнской плате, оперативной памяти, жестким дискам и SSD открытие боковой крышки вообще никак не помогает и в отдельных случаях может даже навредить.

Q: Ну вот поставлю я в корпус 100500 вентиляторов – что мне потом с этим пылесосом делать?

A: А пылесос-то тут при чем?

Скорость скапливания пыли внутри системного блока зависит не от количества вентиляторов, а от организации воздушных потоков. Точнее, всего от одного параметра – соотношения притока и оттока. Также его можно описать как избыточное либо недостаточное давление – хотя этот вариант у людей, слабо знакомых с физикой, вызывает непреодолимое желание начать писать комментарии.

Как уже говорилось выше, корпус ПК – это резервуар, который заполняется воздухом, причем от корпусных вентиляторов зависит лишь интенсивность заполнения, поскольку этот объем нельзя назвать полностью замкнутым.

Воздух же – снова повторимся, – это газ, обладающий естественной для газов физикой. Он стремится покинуть область высокого давления и попасть в область с низким давлением. Проще говоря, если откачивать воздух из негерметичного объема, он будет стараться вновь его заполнить, используя все доступные пути.

Что это значит в контексте корпуса? Вернемся к схеме выше и рассмотрим два примера:

В первом случае в корпусе установлены только два вентилятора, работающие на выдув: один – на задней панели, один – на верхней. В таком случае воздух только выталкивается из корпуса, но не нагнетается. И в результате – корпус начинает «втягивать» воздух внутрь любым доступным способом: через монтажные площадки отсутствующих вентиляторов, вентиляционные решетки, перфорированные планки на задней панели, различные технологические и монтажные отверстия. Пыль в таком случае скапливается быстро и в больших количествах.

Однако физика газа предполагает и обратный процесс. Если газ принудительно нагнетать в опять же негерметичный объем, он, наоборот, будет стараться покинуть его, используя те же пути.

Во втором примере остаются те же два вентилятора, но к ним добавляются еще три, работающих на вдув. Поскольку вентиляторов больше и работают они с той же скоростью, сила притока становится выше силы оттока, и избыток воздуха начинает выталкиваться из корпуса через те же отверстия. Путей для попадания пыли остается только три, и их легко защитить различными пылевыми фильтрами.

Разумеется, второй вариант не означает, что пыли в корпусе не будет вообще, однако скорость ее скапливания будет гораздо ниже.

Q: А что с шумом делать? 10 вентиляторов шумят ведь сильнее, чем два!

A: А вот это, кстати, далеко не факт.

Уровень шума любого вентилятора зависит в первую очередь от его оборотов. Никто ведь не будет спорить с тем, что "печка" в автомобиле на четвертой скорости шумит сильнее, чем на первой?

Вот и с компьютерными вентиляторами все так же. Чем выше скорость вращения, тем больше воздуха прогоняет через себя вентилятор, тем больше шума от его завихрения в лопастях и «разбивания» потока о радиатор или вентиляционную решетку.

Однако скорость вращения вентиляторов в современных ПК и другой электронике напрямую зависит от температуры охлаждаемого элемента. Чем сильнее греется тот же процессор, тем выше скорость вращения вентилятора, пытающегося сбить с него температуру.

Но суть в том, что температуру можно понизить не только повышением оборотов процессорного кулера, но и организацией притока холодного «забортного» воздуха, ведь чем ниже температура хладагента, тем эффективнее работает система охлаждения. И на практике это означает, что добавление корпусных вентиляторов может даже снизить уровень шума. Чем сильнее приток холодного воздуха, тем ниже температура комплектующих и скорость вращения вентиляторов на их кулерах.

Q: Так сколько вентиляторов нужно? Вот у меня в корпусе можно поставить сразу 9 штук – мне что, 9 и устанавливать?

A: Вовсе не обязательно.

Поставить-то их никто вам не запретит, однако нужно понимать, что эффект от добавления каждого последующего вентилятора будет ниже, чем от предыдущего, а температура охлаждаемого элемента физически не может быть ниже температуры хладагента.

На практике это означает, что в определенный момент вы заметите, что дальнейшее увеличение количества вертушек больше не приводит к заметному изменению температур, либо же температуры вовсе не меняются. В таком случае эксперименты можно заканчивать, даже если еще остались свободные посадочные места или разъемы на материнской плате.

Безусловно, общих рекомендаций здесь дать не получится – слишком многое зависит от конструкции корпуса, характеристик самих вентиляторов, тепловыделения железа, расположения корпуса и кучи других факторов.

Однако в большинстве случаев имеет смысл рассматривать конфигурации из 3 (2 на вдув, 1 на выдув) или 5 (3 на вдув, 2 – на выдув) вентиляторов. Это вполне оптимальное количество, которое и по карману сильно не ударит, и позволит подключить все вертушки к материнской плате, регулируя их обороты через биос.

Q: Вот у меня в корпусе (в БП, на процессорном кулере, нужное подчеркнуть) есть штатные вентиляторы. Стоит ли менять их на , и что мне это даст?

A: Если штатный вентилятор обладает какими-либо выраженными дефектами – к примеру, высокочастотный свист от обмотки, вибрация неотбалансированной крыльчатки, механический стрекот подшипника – тогда да, менять его стоит. В остальных же случаях выбор здесь исключительно за вами.

Что даст замена штатного вентилятора – зависит от его характеристик и характеристик той модели, которую вы выбрали на замену. К примеру, выбор вентилятора на другом типе подшипника может изменить уровень механического шума, причем в обе стороны, а также повысить или понизить срок службы вертушки.

Выбор модели с меньшей скоростью вращения определенно позволит снизить уровень шума, а вот эффективность может измениться незначительно или не измениться вовсе, если производительность нового вентилятора окажется близка к старому.

На что нужно обратить внимание при выборе корпусного вентилятора?

Типоразмер

Вентилятор, будучи стандартизированным устройством, может устанавливаться только в предназначенную ему монтажную площадку. Разумеется, при особом желании можно закрепить на радиаторе вентилятор нестандартного типорамера и вырезать площадку большего размера в корпусе, однако смысла в этом немного.

Для корпусов, «воздушных» кулеров и радиаторов СВО используются преимущественно вентиляторы стандартных типоразмеров: 80x80, 92х92, 120х120 и 140х140 мм.

Вентиляторы меньших размеров – 25х25, 30х30, 40х40, 50х50, 60х60 мм – обыкновенно используются для охлаждения компактной техники – такой, как роутеры. Но встречаются также в конструкции «печек» лазерных принтеров, корпусах NAS и иногда даже в низкопрофильных корпусах десктопных ПК.

В контексте комплектующих могут найти свое применение для точечного обдува радиатора чипсета и/или зоны VRM материнской платы, где малые размеры позволяют разместить вентилятор, не мешая остальным комплектующим, а также сфокусировать воздушный поток в конкретной зоне.

Вентиляторы нестандарных размеров – к примеру, 150х150 или 150х140 мм – можно обнаружить в конструкции процессорных кулеров флагманских моделей. А вертушки типоразмером 200х200 – в некоторых корпусах, рассчитанных на геймерскую аудиторию.

Стоит также отметить, что в конструкции кулеров иногда встречаются вентиляторы, имеющие необычную форму. К примеру, у процессорных кулеров Deepcool серии Gammaxx, где используются вентиляторы с крыльчаткой, соответствующей 120-мм моделям, но монтажными отверстиями, соответствующими 92-мм. Заменить вентилятор в таком случае можно только на модель в типоразмере 92х92 мм.

Нечто похожее можно найти у Thermalright, Noctua, Deepcool и ряда других производителей. 140-мм крыльчатка и крепления, расположенные по стандарту 120-мм моделей. Правда, такие вентиляторы распространены в продаже, и при необходимости заменить их не составит труда.

Толщина

Стандартный корпусный вентилятор, устанавливаемый также в блоки питания и на кулеры, имеет толщину около 25 мм с незначительными отклонениями. Это вполне компромиссный вариант, позволяющий экономить место и развивать нужное статическое давление для продувки кулеров и радиаторов СВО с плотно уложенными ребрами.

Однако, есть и другие варианты.

Низкопрофильные вентиляторы применяются преимущественно в кулерах для HTPC, где крайне важна экономия пространства, а более высокие вентиляторы попросту не влезут в корпус. Впрочем, в определенных случаях их можно применять и в других форматах. Однако нужно помнить, что низкопрофильная вертушка создает меньший воздушный поток и, что важнее, меньшее статическое давление, что может сильно понизить эффективность кулера.

Вентиляторы с большей толщиной, как правило, обладают и более мощной крыльчаткой. Их эффективность заметно выше, чем у стандартных, но также выше и уровень шума, а при установке таких вентиляторов могут возникнуть проблемы с габаритами.

Впрочем, иногда толщина рамки не означает наличие более массивной крыльчатки – она может быть вызвана наличием подсветки или других элементов дизайна. В таком случае проблема габаритов остается, а вот никаких реальных преимуществ вы не получаете.

Тип разъёма питания

Как и размеры вентиляторов, тип разъема питания стандартизирован, причем вариантов здесь даже меньше. Однако каждый из них имеет свои особенности, о которых следует поговорить отдельно.

Разъем питания 2-pin, что вполне логично, имеет только два контакта: питание и землю. Мониторинг скорости вращения отсутствует, регулировка оборотов методом PWM – тоже. Впрочем, этот разъем в современных ПК практически не используется – найти его там можно разве что в блоках питания, и то лишь тех, где провода от вентилятора не впаяны в плату. Впрочем, и в других устройствах разъем 2-pin постепенно становится редкостью.

Разъем 3-pin распространен гораздо больше. Встречается он и в ПК, и в устройствах других типов и до сих пор не сдает свои позиции. От предыдущего варианта отличается наличием третьего контакта, отвечающего за мониторинг оборотов. Регулировка же скорости вращения возможна только за счет изменения напряжения, PWM отсутствует. Хотя благодаря унификации подключить такой вентилятор можно и к разъему 4-pin.

Сам же разъем 4-pin отличается от предшественника еще одним контактом – собственно, тем самым, за счет которого осуществляется регулировка оборотов методом PWM (или ШИМ). Стандартную регулировку изменением напряжения это не отменяет, но PWM позволяет использовать более широкие лимиты и большее количество ступеней. Опять же, вентилятор с разъемом 4-pin можно подключать к разъему 3-pin, но регулироваться он будет только напряжением.

Разъем Molex предполагает подключение вентилятора напрямую к блоку питания и работу на фиксированных оборотах. В современных ПК это скорее анахронизм, а вот в устройствах других типов или других предназначений может найти свое применение.

Разъемы 5-pin или 6-pin – это проприентарное решение ряда производителей, рассчитанное на подключение вентиляторов к фирменной панели управления либо к фирменному интерфейсу, позволяющему управлять подсветкой и скоростью вращения вентиляторов через фирменную же утилиту. Если у вас есть соответствующее устройство – можно приобретать и вентилятор. Если же нет – использовать его вы сможете, но сильно потеряете в функционале.

Регулировка оборотов

Из предыдущего абзаца можно сделать вывод, что регулировка скорости вращения вентиляторов возможна тремя способами: изменением напряжения, использованием ШИМ или же через фирменную утилиту.

На деле разновидностей немного больше, и каждая имеет собственный функционал, который будет иметь преимущества в определенной ситуации.

Регулировка по напряжению возможна несколькими способами. В первую очередь это, разумеется, софтовая регулировка в биос материнской платы, где можно задать датчик температуры, в зависимости от которого будут меняться обороты, а также саму кривую оборотов.

Более простой способ – использование переходника с резистором, понижающим подаваемое на вентилятор напряжение и, соответственно, его скорость. Ступень регулировки только одна, но зато настраивать ничего не надо – только подключить переходник.

Более функциональный вариант – использование подстроечного резистора, который позволяет настраивать сопротивление в относительно широких пределах. В таком случае скорость работы вентилятора можно менять при включенной системе и в гораздо более широких пределах.

Еще более продвинутая разновидность – использование внешнего термодатчика, который можно закрепить на радиаторе или (в некоторых случаях) на самом охлаждаемом элементе. Разумеется, использовать такой вентилятор на кулере ЦПУ особого смысла нет – там температура прекрасно измеряется своими датчиками. А вот если вы заменили кулер видеокарты на альтернативный, а материнская плата о температуре ГПУ не знает, или же приделали радиатор VRM к плате, на которой его изначально не было – такой вентилятор сильно упростит дальнейшую эксплуатацию системы.

Регулировка посредством PWM требует подключения вентилятора к разъему 4-pin, в остальном же никакой разницы с точки зрения пользователя с 3-pin не будет. Кривая роста оборотов в зависимости от температур, как правило, уже заложена в биос платы, и единственное, чем она может отличаться от аналогичной кривой регулировки по напряжению – меньшее значение минимальных оборотов.

Софтовая регулировка доступна фирменным вентиляторам и наборам вентиляторов либо штатным вертушкам готовых СВО. Как правило, для ее реализации необходимы не только сами вертушки, но и контроллер, подключающийся к ПК через шину USB и управляющий подсветкой и оборотами вертушек. Причем первая часть функционала в данном случае выступает основной, поскольку регулировать обороты можно и обозначенными выше способами.

Максимальная и минимальная скорости вращения

Эти параметры преимущественно определяют эффективность вентилятора и уровень издаваемого им шума. Оба параметра примерно на 80 % зависят именно от скорости вращения вертушки, и лишь оставшиеся 20 % определяются количеством и формой лопастей, аэродинамическими оптимизациями, типом подшипника и прочими факторами.

Соответственно, чем ниже скорость вращения вентилятора, тем он менее эффективен, но тем проще и приятнее будет длительное нахождение пользователя за компьютером. И наоборот – чем она выше, тем ниже будут температуры комплектующих, но выше уровень шума.

Впрочем, не стоит думать, что если в характеристиках вашего вентилятора написано, к примеру, «500-2000 об/мин», то работать он будет только в двух указанных режимах. Это только верхняя и нижняя границы оборотов. Количество фактических ступеней между ними будет зависеть исключительно от выбранного вами способа регулировки.

Также следует помнить, что вентиляторы разного типоразмера нельзя сравнивать исключительно по рабочим оборотам: к примеру, на одинаковых 1500 об/мин вентиляторы размеров 80х80, 92х92 и 120х120 мм будут создавать совершенно разный воздушный поток и разный уровень шума. И наоборот – при одинаковой силе потока и одинаковом уровне шума те же вентиляторы будут работать на разных оборотах: к примеру, 1000 об/мин для 120х120, 1600 для 92х92 или 2000 об/мин для 80х80 мм.

Максимальный воздушный поток и максимальный уровень шума

Эти параметры следует отнести в один пункт, поскольку опираться на них при выборе вентилятора... абсолютно не стоит!

Конечно, в идеальном мире именно эти параметры имели бы решающее значение, но вот в мире реальном все имеет свои условности. И для вентиляторов такой условностью становится отсутствие единой для всех производителей методики измерения силы воздушного потока и уровня шума. Измеряют их при разной температуре, разном давлении и влажности воздуха, а шум – еще и с разного расстояния.

В результате всего этого полученные производителем значения имеют крайне мало общего с реальными. К примеру, вентилятор, для которого производитель указал максимальный уровень шума в 26 децибелл в неизвестных условиях, в условиях реальных может выдать и все 40. В то же время вентилятор с паспортными 32 децибеллами выдаст в тех же условиях максимум 34-36 и окажется куда более комфортным.

Совет здесь может быть только один: не смотрите в паспортные характеристики, изучайте обзоры на адекватных ресурсах и делайте вывод по факту.

Тип подшипника

А вот этот параметр, наоборот, может иметь определяющее значение при выборе, хотя не позволяет однозначно причислить вентиляторы к «подходящим» и «не заслуживающим внимания».

Подшипников, на самом деле, существует гораздо больше, однако в компьютерных вентиляторах широко представлены четыре разновидности: подшипник скольжения, подшипник качения, гидродинамический подшипник и подшипник с магнитным центрированием.

Подшипник скольжения или втулка – это простейший и самый дешевый вариант, в котором происходит трение двух поверхностей в среде смазки. Собственно, свое второе название (втулка) этот тип подшипника получил как раз из-за наличия в нем втулки, отделяющей корпус подшипника от вала.

Такая конструкция является самой дешевой, поэтому и вентиляторы на подшипнике скольжения, как правило, не отличаются высокой ценой. Но кроме того, втулка – это еще и один из самых тихих подшипников, механические призвуки в работе такого вентилятора фактически отсутствуют.

Обратная сторона медали – крайне ограниченный срок службы. Втулка, из какого бы материала она ни была сделана, со временем разрушается от трения, и вентилятор выходит из строя. Зачастую вентиляторы на подшипниках скольжения выходят из строя через год работы, а менее качественные модели могут проработать и меньше.

Кроме того, ввиду особенностей своей конструкции, втулка крайне плохо переносит высокие температуры, а также не может использоваться в горизонтальном положении – смазка в таком случае быстро вытекает, и износ подшипника резко ускоряется.

Немного исправляет ситуацию втулка с винтовой нарезкой, обеспечивающей рециркуляцию смазки. Этот тип подшипника заметно повышает срок службы вентилятора, сохраняя при этом стабильно низкий уровень шума. Тем не менее, прочие недостатки втулки сохраняются и в этом варианте.

Подшипник качения или шарикоподшипник использует иной принцип работы: конструкция представляет собой два кольца, между которыми находятся металлические шарики, обеспечивающие вращение.

Этот тип подшипника – фактически полная противоположность втулки. Шарики крайне долговечны и могут работать едва ли не десятилетиями, им абсолютно все равно, в каком положении и при каких температурах предстоит вращаться… но обратной стороной является повышенный уровень механического шума.

Избавиться от шума позволяют керамические подшипники качения – они еще более долговечны и еще более индифферентны к температурам, однако стоят такие подшипники дороже всех прочих типов (даже гидродинамика!), а встречаются крайне редко.

Гидродинамический подшипник – по сути дальнейшее развитие идей втулки. Камера такого подшипника герметична, а трение происходит в слое смазки, постоянном и исключающем прямой контакт трущихся деталей.

Качественный гидродинамик может даже превосходить шарикоподшипник по сроку службы и однозначно выигрывать у него по уровню шума, поскольку здесь он не отличается от втулки. Минус же здесь очевиден: высокая цена гидродинамического подшипника, сохраняющаяся и по сей день. Дешевые же вентиляторы, заявляющие о наличии гидродинамика, как правило, основаны на всё той же втулке.

Разновидность гидродинамического подшипника – подшипник масляного давления (SSO). Отличается увеличенной толщиной гидродинамического слоя, а для исключения возможности смещения вал центрируется магнитом в основании вентилятора. Стоят такие подшипники чуть дешевле керамических подшипников качения, а встречаются столь же редко, и, разумеется, преимущественно в вентиляторах топовых брендов.

В подшипниках с магнитным центрированием ось вентилятора «подвешивается» в магнитном поле, вследствие чего исключается механический контакт трущихся поверхностей. Подшипник закономерно оказывается самым долговечным, самым тихим и самым дорогостоящим вариантом, а распространенность его даже ниже, чем у керамических и SSO.

Критерии и варианты выбора

Если вам нужен обдув чипсета, зоны VRM материнской платы, или вы устанавливаете вентилятор в корпус греющегося Wi-Fi-роутера, обратите внимание на [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=cztx-392s-392z-392x]компактные варианты в размерах от 20 до 60 мм. Такие вентиляторы легко установить в нужные вам места, а весь создаваемый ими воздушный поток будет сфокусирован на охлаждаемом элементе. Единственный здесь совет – обратите внимание на [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?order=1&stock=2&f=cztx-392s-392z-392x&f=393j-393n-393o-393l]модели с более «долгоиграющими» подшипниками, а то придется повторять работу через год.

Если вам нужны вентиляторы в низкопрофильный корпус для HTPC или офисный корпус – обратите внимание на [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?order=1&stock=2&f=392t-fju8k-392u&f=7vau&f=393j-393n-393o-393l]стандартные модели в типоразмерах 80х80 и 92х92 мм, причём экономить на типе подшипника здесь также не стоит.

В случае HTPC могут пригодиться и [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?order=1&stock=2&f=392t-fju8k-392u-fju8b-392v&f=7vau&f=393j-393n-393o-393l&f=3938-393b-eaej-3939-ebr0]низкопрофильные вентиляторы, особенно если выбранный вами корпус максимально компактен.

Для корпуса домашнего компьютера в стандартном корпусе формата АТХ подойдут любые вентиляторы стандартных типоразмеров: [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=392u-fju8b-392v-3935-392w&f=39e6-39ea-39e8]92х92, 120х120, 140х140 мм. В зависимости от ваших целей можно будет обратить внимание на [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=392u-fju8b-392v-3935-392w&f=39e6-39ea-39e8&f=500-2000]тихие модели, наиболее [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=110-400&f=392u-fju8b-392v-3935-392w&f=39e6-39ea-39e8]бюджетные варианты или наиболее [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=392u-fju8b-392v-3935-392w&f=39e6-39ea-39e8&f=393j-48dus-393n-393o-393l]долговечные.

Для игрового ПК или рабочей станции, собираемых с целью максимально длительной эксплуатации без замены комплектующих, имеет смысл обратить внимание на вентиляторы в тех же размерностях, но с [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=392v-3935-392w&f=39e6-39ea-39e8&f=393j-48dus-393n-393l]максимально надёжными подшипниками.

В случае же, если компьютер собирается в определенной цветовой гамме, стоит предусмотреть либо соответствующее сочетание цветов [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=392v-3935-392w-h3ph-eayh-k1qbc&f=391x-391w-7vmy-eaxm-3920-3923-391u-3921-3924]рамки и [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?order=1&stock=2&f=392v-3935-392w-h3ph-eayh-k1qbc&f=392h-392n-fu2r-392l-392e-392m-392d-392o-392i-392f]крыльчатки вентилятора, либо наличие [url="https://www.dns-shop.ru/catalog/17a9cf0216404e77/ventilyatory-dlya-korpusa/?p=1&stock=2&order=1&f=392v-3935-392w-h3ph-eayh-k1qbc&f=39ia&f=39e6-39ea-39e8]настраиваемой подсветки.

club.dns-shop.ru


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.