Поколение процессоров intel core i5 таблица


Сравнение процессоров Intel Core i5 разных поколений

Опубликовано 8.07.2018 автор — 0 комментариев

Однажды один великий мудрец в капитанских погонах сказал, что без процессора компьютер работать не сможет. С тех пор каждый считает своим долгом найти тот самый процессор, благодаря которому его система будет летать как истребитель.

Поскольку охватить все известные науки чипы мы просто не можем, хотим сосредоточиться на одном интересном семействе рода Интеловичей – Core i5. Очень уж у них характеристики интересные и производительность добротная.

Почему именно эта серия, а не i3 или i7? Все просто: отличный потенциал без переплаты за ненужные инструкции, которыми грешит седьмая линейка. Да и ядер поболее, нежели в Core i3. Вы вполне закономерно начнете спорить о поддержке Hyper Threading и окажетесь частично правы, но 4 физических ядра умеют гораздо больше, чем 2+2 виртуальных.

История серии

Сегодня на повестке дня у нас сравнение процессоров Intel Core i5 разных поколений. Здесь хотелось бы затронуть такие насущные темы как техпроцесс, сокет, теплопакет и наличие припоя под крышкой. А если будет настроение, то еще и лбами между собой столкнем особо интересные камни. Итак, поехали.

Начать хочется с того, что рассматриваться будут исключительно настольные процессоры, а не варианты для ноутбука. Сравнение мобильных чипов будет, но в другой раз.

Таблица периодичности выхода выглядит следующим образом:

Поколение Год выпуска Архитектура Серия Сокет Количество ядер/потоков Кэш 3‑го уровня
1 2009 (2010) Hehalem (Westmere) i5-7xx (i5-6xx) LGA 1156 4/4 (2/4) 8 МБ (4 МБ)
2 2011 Sandy Bridge i5-2xxx LGA 1155 4/4 6 МБ
3 2012 Ivy Bridge i5-3xxx LGA 1155 4/4 6 МБ
4 2013 Haswell i5-4xxx LGA 1150 4/4 6 МБ
5 2015 Broadwell i5-5xxx LGA 1150 4/4 4 МБ
6 2015 Skylake i5-6xxx LGA 1151 4/4 6 МБ
7 2017 Kaby Lake i5-7xxx LGA 1151

LGA 2066

4/4 6 МБ
8 2018 Coffee Lake i5-8xxx LGA 1151 v2 6/6 9 МБ

2009

Первые представители серии увидели свет в далеком 2009 году. Они были созданы на 2 различных архитектурах: Nehalem (45 нм) и Westmere (32 нм). Самыми яркими представителями линейки стоит назвать i5-750 (4x2,8 ГГц) и i5-655K (3,2 ГГц). Последний дополнительно имел разблокированный множитель и возможность разгона, что говорило о его высокой производительности в играх и не только.

Отличия между архитектурами кроются в том, что Westmare построены по нормам техпроцесса 32 нм и обладают затворами 2 поколения. Да и энергопотребление у них меньше.

2011

В этом году свет увидело второе поколение процессоров – Sandy Bridge. Их отличительной чертой стало наличие встроенного видеоядра Intel HD 2000.

Среди обилия моделей i5-2xxx особо хочется выделить ЦП с индексом 2500К. В свое время оно произвело настоящий фурор среди геймеров и энтузиастов, сочетая высокую частоту 3,2 ГГц с поддержкой Turbo Boost и невысокую стоимость. И да, под крышкой был припой, а не термопаста, что дополнительно способствовало качественному разгону камня без последствий.

2012

Дебют Ivy Bridge привнес 22-нанометровый техпроцесс, более высокие частоты, новые контроллеры DDR3, DDR3L и PCI‑E 3.0, а также поддержку USB 3.0 (но только для i7).

Встроенная графика эволюционировала до Intel HD 4000.

Наиболее интересным решением на этой платформе стал Core i5-3570K с разблокированным множителем и частотой до 3,8 ГГц в бусте.

2013

Поколение Haswell не привнесло ничего сверхъестественного кроме нового сокета LGA 1150, набора инструкций AVX 2.0 и новой графики HD 4600. По сути, весь упор был сделан на энергосбережение, чего компании удалось добиться.

А вот в качестве ложки дегтя значится замена припоя на термоинтерфейс, что здорово снижало разгонный потенциал топового i5-4670K (и его обновленную версию 4690К из линейки Haswell Refresh).

2015

Выход Broadwell добавил несколько мобильных чипов в копилку i5, а также один настольный 5675С, который не получил широкого распространения среди пользователей.

По сути это тот же Haswell, перенесенный на архитектуру 14 нм.

2016

Шестая итерация под именем Skylake привнесла обновленный сокет LGA 1151, поддержку ОЗУ типа DDR4, IGP 9‑го поколения, инструкций AVX 3.2 и SATA Express.

Среди процессоров стоит выделить i5-6600K и 6400Т. Первый любили за высокие частоты и разблокированный множитель, а второй за низкую стоимость и крайне низкое тепловыделение 35 Вт несмотря на поддержку Turbo Boost.

2017

Эра Kaby Lake является самой спорной, поскольку не привнесла абсолютно ничего нового в сегмент десктопных процессоров кроме нативной поддержки USB 3.1. также эти камни напрочь отказываются запускаться на ОС Windows 7, 8 и 8.1, не говоря уже о более старых версиях.

Сокет остался прежним – LGA 1151. Да и набор интересных процессоров не изменился – 7600К и 7400T. Причины народной любви те же, что и у Skylake.

2018

Процессоры Goffee Lake в корне отличаются от своих предшественников. На смену четырем ядрам пришло 6, что ранее себе могли позволить лишь топовые версии i7 серии X. Размера кэша L3 увеличили до 9 МБ, а теплопакет в большинстве случаев не превышает 65 Вт.

Из всей коллекции наиболее интересной считается модель i5-8600K за возможность разгона вплоть до 4,3 ГГц (правда всего 1 ядра). Однако публика предпочитает i5-8400, как самый недорогой «входной» билет.

Вместо итогов

Если бы нас спросили, что бы мы предложили львиной доли геймеров, мы бы без запинки сказали, что i5-8400. Преимущества очевидны:

  • стоимость ниже 190$
  • 6 полноценных физических ядер;
  • частота до 4 ГГц в Turbo Boost
  • теплопакет 65 Вт
  • комплектный вентилятор.

Дополнительно вам не придется подбирать «определенную» оперативную память, как для Ryzen 1600 (основной конкурент к слову), да и сами ядра в Intel. Вы лишаетесь дополнительных виртуальных потоков, однако практика показывает, что в играх они лишь снижают FPS, не привнося определенных корректив в геймплей.

Кстати еще, если не знаете где покупать, рекомендую обратить внимание на одни очень популярный и серьезный сервис (поверьте, он много кому известен и знаком) – заодно сможете там сориентироваться по ценам на i5 8400, периодически, а точнее очень часто сам этим ресурсом пользуюсь, чтобы определиться у кого выгоднее покупить.

В любом случае решать вам. До новых встреч, не забывайте подписываться на обновления блога.

И еще новость для тех, кто следит за ценами на SSD(твердотельные диски) – такое редко случается.

С уважением, автор Андрей Андреев

infotechnica.ru

Процессоры Intel Core пятого поколения для настольных ПК

2 июня компания Intel анонсировала десять новых 14-нанометровых процессоров для настольных и мобильных ПК семейства Intel Core пятого поколения (кодовое наименование Broadwell-С) и пять новых 14-нанометровых процессоров семейства Intel Xeon E3-1200 v4.

Из десяти новых процессоров Intel Core пятого поколения (Broadwell-С) для настольных и мобильных ПК только два процессора ориентированы на настольные ПК и имеют разъем LGA 1150: это четырехъядерные модели Intel Core i7-5775C и Core i5-5675C. Все остальные процессоры Intel Core пятого поколения имеют BGA-исполнение и ориентированы на ноутбуки. Краткие характеристики новых процессоров Broadwell-С представлены в таблице.

РазъемКоличество ядер/потоковРазмер кэша L3, МБЧастота номинальная /максимальная, ГГцTDP, Вт Графическое ядро
Core i7-5950HQBGA4/862,9/3,747Iris Pro Graphics 6200
Core i7-5850HQBGA4/862,7/3,647Iris Pro Graphics 6200
Core i7-5750HQBGA4/862,5/3,447Iris Pro Graphics 6200
Core i7-5700HQBGA4/862,7/3,547Intel HD Graphics 5600
Core i5-5350HBGA2/443,1/3,547Iris Pro Graphics 6200
Core i7-5775RBGA4/863,3/3,865Iris Pro Graphics 6200
Core i5-5675RBGA4/443,1/3,665Iris Pro Graphics 6200
Core i5-5575RBGA4/442,8/3,365Iris Pro Graphics 6200
Core i7-5775CLGA 11504/863,3/3,765Iris Pro Graphics 6200
Core i5-5675CLGA 11504/443,1/3,665Iris Pro Graphics 6200

Из пяти новых процессоров семейства Intel Xeon E3-1200 v4 только три модели (Xeon E3-1285 v4, Xeon E3-1285L v4, Xeon E3-1265L v4) имеют разъем LGA 1150, а еще две модели выполнены в BGA корпусе и не предназначены для самостоятельной установки на материнскую плату. Краткие характеристики новых процессоров семейства Intel Xeon E3-1200 v4 представлены в таблице.

РазъемКоличество ядер/потоковРазмер кэша L3, МБЧастота номинальная /максимальная, ГГцTDP, Вт Графическое ядро
Xeon E3-1285 v4LGA 11504/863,5/3,895Iris Pro Graphics P6300
Xeon E3-1285L v4LGA 11504/863,4/3,865Iris Pro Graphics P6300
Xeon E3-1265L v4LGA 11504/862,3/3,335Iris Pro Graphics P6300
Xeon E3-1278L v4BGA4/862,0/3,347Iris Pro Graphics P6300
Xeon E3-1258L v4BGA2/461,8/3,247Intel HD Graphics P5700

Таким образом, из 15 новых процессоров Intel лишь пять моделей имеют разъем LGA 1150 и ориентированы на настольные системы. Для пользователей выбор, конечно, небольшой, особенно если учесть, что процессоры семейства Intel Xeon E3-1200 v4 ориентированы на серверы, а не на пользовательские ПК.

В дальнейшем мы сосредоточимся на рассмотрении новых 14-нанометровых процессоров с разъемом LGA 1150.

Итак, основными особенностями новых процессоров Intel Core пятого поколения и процессоров семейства Intel Xeon E3-1200 v4 является новая 14-нанометровая микроархитектура ядер с кодовым названием Broadwell. В принципе, никакого принципиального отличия между процессорами семейства Intel Xeon E3-1200 v4 и процессорами Intel Core пятого поколения для настольных систем нет, поэтому в дальнейшем все эти процессоры мы будем обозначать как Broadwell.

Вообще, нужно отметить, что микроархитектура Broadwell — это не просто Haswell в 14-нанометровом исполнении. Скорее, это немного улучшенная микроархитектура Haswell. Впрочем, Intel так делает всегда: при переходе на новый техпроцесс производства вносятся и изменения в саму микроархитектуру. В случае с Broadwell речь идет о косметических улучшениях. В частности, увеличены объемы внутренних буферов, есть изменения в исполнительных блоках ядра процессора (изменена схема выполнения операций умножения и деления чисел с плавающей запятой).

Подробно рассматривать все особенности микроархитектуры Broadwell мы не будем (это тема для отдельной статьи), но еще раз подчеркнем, что речь идет лишь о косметических изменениях микроархитектуры Haswell, а потому, не стоит ожидать, что процессоры Broadwell окажутся более производительными, чем процессоры Haswell. Конечно, переход на новый техпроцесс позволил снизить энергопотребление процессоров (при равной тактовой частоте), но никаких существенных приростов производительности ожидать не стоит.

Пожалуй, наиболее существенное отличие новых процессоров Broadwell от Haswell заключается в кэше четвертого уровня (L4-кэш) Crystalwell. Уточним, что такой кэш L4 присутствовал в процессорах Haswell, но лишь в топовых моделях мобильных процессоров, а в процессорах Haswell для настольных ПК c разъемом LGA 1150 его не было.

Напомним, что в некоторых топовых моделях мобильных процессоров Haswell было реализовано графическое ядро Iris Pro с дополнительной памятью eDRAM (embedded DRAM), что позволяло решить проблему с недостаточной пропускной способностью памяти, используемой для GPU. Память eDRAM, представляла собой отдельный кристалл, который располагался на одной подложке с кристаллом процессора. Этот кристалл получил кодовое наименование Crystalwell.

Память eDRAM имела размер 128 МБ и изготовлялась по 22-нанометровому техпроцессу. Но самое главное, что эта eDRAM память использовалась не только для нужд GPU, но и для вычислительных ядер самого процессора. То есть фактически, Crystalwell представлял собой L4-кэш, разделяемый между GPU и вычислительными ядрами процессора.

Во всех новых процессорах Broadwell также присутствует отдельный кристалл памяти eDRAM размером 128 МБ, который выступает в роли кэша L4 и может использоваться графическим ядром и вычислительными ядрами процессора. Причем, отметим, что память eDRAM в 14-нанометровых процессорах Broadwell точно такая же, как и в топовых мобильных процессорах Haswell, то есть выполняется по 22-нанометровому техпроцессу.

Следующая особенность новых процессоров Broadwell заключается в новом графическом ядре с кодовым наименованием Broadwell GT3e. В варианте процессоров для настольных и мобильных ПК (Intel Core i5/i7) — это Iris Pro Graphics 6200, а в процессорах семейства Intel Xeon E3-1200 v4 — это Iris Pro Graphics P6300 (за исключением модели Xeon E3-1258L v4). Углубляться в особенности архитектуры графических ядер Broadwell GT3e мы не станем (это тема для отдельной статьи) и лишь вкратце рассмотрим его основные особенности.

Напомним, что графическое ядро Iris Pro до этого присутствовало лишь в мобильных процессорах Haswell (Iris Pro Graphics 5100 и 5200). Причем, в графических ядрах Iris Pro Graphics 5100 и 5200 присутствует по 40 исполнительных устройств (EU). Новые графические ядра Iris Pro Graphics 6200 и Iris Pro Graphics P6300 наделены уже 48 EU, причем изменилась и система организации EU. Каждый отдельный блок графического процессора содержит по 8 EU, а графический модуль объединяет по три графических блока. То есть в одном графическом модуле содержится 24 EU, а в самом графическом процессоре Iris Pro Graphics 6200 или Iris Pro Graphics P6300 объединяются по два модуля, то есть в сумме получаем 48 EU.

Что касается разницы между графическими ядрами Iris Pro Graphics 6200 и Iris Pro Graphics P6300, то на уровне «железа» это одно и то же (Broadwell GT3e), а вот драйвера у них разные. В варианте Iris Pro Graphics P6300 драйвера оптимизированы под задачи, специфические для серверов и графических станций.

Прежде чем переходить к детальному рассмотрению результатов тестирования Broadwell, расскажем еще о нескольких особенностях новых процессоров.

Прежде всего, новые процессоры Broadwell (включая и Xeon E3-1200 v4) совместимы с материнскими платами на базе чипсетов Intel 9-серии. Мы не можем утверждать, что любая плата на базе чипсета Intel 9-серии будет поддерживать эти новые процессоры Broadwell, но большинство плат их поддерживают. Правда, для этого придется обновить BIOS на плате, причем BIOS должна поддерживать новые процессоры. К примеру, для тестирования мы использовали плату ASRock Z97 OC Formula и без обновления BIOS система работала только при наличии дискретной видеокарты, а вывод изображения через графическое ядро процессоров Broadwell был невозможен.

Следующая особенность новых процессоров Broadwell в том, что модели Core i7-5775C и Core i5-5675С имеют разблокированный коэффициент умножения, то есть ориентированы на разгон. В семействе процессоров Haswell такие процессоры с разблокированным коэффициентом умножения составляли K-серию, а в семействе Broadwell вместо буквы «К» используется буква «C». А вот процессоры Xeon E3-1200 v4 разгон не поддерживают (у них невозможно увеличить коэффициент умножения).

Теперь познакомимся поближе с теми процессорами, которые попали к нам на тестирование. Это модели Intel Core i7-5775C, Core i5-5675С, Xeon E3-1285 v4 и Xeon E3-1265L v4. Фактически, из пяти новых моделей с разъемом LGA 1150 не хватает лишь процессора Xeon E3-1285L v4, который отличается от модели Xeon E3-1285 v4 лишь более низким энергопотреблением (65 Вт вместо 95 Вт) и тем, что номинальная тактовая частота ядер у него чуть ниже (3,4 ГГц вместо 3,5 ГГц). Кроме того, для сравнения мы добавили также Intel Core i7-4790K, который является топовым процессором в семействе Haswell.

Характеристики всех протестированных процессоров представлены в таблице:

Xeon E3-1285 v4Xeon E3-1265L v4Core i7-5775CCore i5-5675СCore i7-4790K
Техпроцесс, нм1414141422
РазъемLGA 1150LGA 1150LGA 1150LGA 1150LGA 1150
Количество ядер44444
Количество потоков88848
Кэш L3, МБ66648
Кэш L4 (eDRAM), МБ128128128128N/A
Номинальная частота, ГГц3,52,33,33,14,0
Максимальная частота, ГГц 3,83,33,73,64,4
TDP, Вт9535656588
Тип памятиDDR3-1333/1600/1866DDR3 -1333/1600
Графическое ядроIris Pro Graphics P6300Iris Pro Graphics P6300Iris Pro Graphics 6200Iris Pro Graphics 6200HD Graphics 4600
Количество исполнительных блоков GPU48 (Broadwell GT3e)48 (Broadwell GT3e)48 (Broadwell GT3e)48 (Broadwell GT3e)20 (Haswell GT2)
Номинальная частота графического процессора, МГц300300300300350
Максимальная частота графического процессора, ГГц1,151,051,151,11,25
Технология vPro++
Технология VT-x+++++
Технология VT-d+++++
Стоимость, $556417366276339

А теперь, после нашего экспресс-обзора новых процессоров Broadwell, перейдем непосредственно к тестированию новинок.

Тестовый стенд

Для тестирования процессоров мы использовали стенд следующей конфигурации:

Системная платаASRock Z97 OC Formula
ЧипсетIntel Z97
Версия BIOS1.80
Память8 ГБ DDR3-1600
Режим работы памятидвухканальный
НакопительIntel SSD 520 Series (240 ГБ)
Операционная системаWindows 8.1 (64-бит)
Версия драйвера графического ядра15.36.21.64.4222

Методика тестирования

Тестирование процессоров проводилось с использованием наших скриптовых бенчмарков iXBT Workstation Benchmark 2015, iXBT Application Benchmark 2015 и iXBT Game Benchmark 2015. Если точнее, то за основу мы взяли методику тестирования рабочих станций, но расширили ее, дополнив тестами из пакета iXBT Application Benchmark 2015 и игровыми тестами iXBT Game Benchmark 2015.

Таким образом, для тестирования процессоров использовались следующие приложения и бенчмарки:

  • MediaCoder x64 0.8.33.5680
  • SVPmark 3.0
  • Adobe Premiere Pro CC 2014.1 (Build 8.1.0)
  • Adobe After Effects CC 2014.1.1 (Version 13.1.1.3)
  • Photodex ProShow Producer 6.0.3410
  • Adobe Photoshop CC 2014.2.1
  • ACDSee Pro 8
  • Adobe Illustrator CC 2014.1.1
  • Adobe Audition CC 2014.2
  • Abbyy FineReader 12
  • WinRAR 5.11
  • Dassault SolidWorks 2014 SP3 (пакет Flow Simulation)
  • SPECapc for 3ds max 2015
  • SPECapc for Maya 2012
  • POV-Ray 3.7
  • Maxon Cinebench R15
  • SPECviewperf v.12.0.2
  • SPECwpc 1.2

Кроме того, для тестирования использовались игры и игровые бенчмарки из пакета iXBT Game Benchmark 2015. Тестирование в играх производилось при разрешении 1920х1080.

Дополнительно мы измерили энергопотребление процессоров в режиме простоя и стрессовой загрузки. Для этого использовался специализированный программно-аппаратный комплекс, подключаемый в разрыв цепей питания системной платы, то есть между блоком питания и системной платой.

Для создания стрессовой загрузки процессора мы использовали утилиту AIDA64 (тесты Stress FPU и Stress GPU).

Результаты тестирования

Энергопотребление процессоров

Итак, начнем с результатов тестирования процессоров на энергопотребление. Результаты тестирования представлены на диаграмме.

Самым прожорливым в плане энергопотребления, как и следовало ожидать, оказался процессор Intel Core i7-4790K с заявленным TDP 88 Вт. Его реальное энергопотребление в режиме стрессовой загрузки составило 119 Вт. При этом, температура ядер процессора составляла 95 °C и наблюдался троттлинг.

Следующим по энергопотреблению был процессор Intel Core i7-5775C с заявленным TDP 65 Вт. Для этого процессора энергопотребление в режиме стрессовой загрузки составило 72,5 Вт. Температура ядер процессора достигала 90 °C, но троттлинг не наблюдался.

Третье месте по энергопотреблению занял процессор Intel Xeon E3-1285 v4 c TDP 95 Вт. Его энергопотребление в режиме стрессовой загрузки составило 71 Вт, а температура ядер процессора составляла 78 °C

Далее следует процессор Core i5-5675С c TDP 65 Вт. Его энергопотребление в режиме стрессовой загрузки составило 58 Вт, а температура ядер процессора достигала 90 °C.

А самым экономичным в плане энергопотребления оказался процессор Intel Xeon E3-1265L v4 c TDP 35 Вт. В режиме стрессовой загрузки энергопотребление этого процессора не превосходило 39 Вт, а температура ядер процессора составляла всего 56 °C.

Что ж, если ориентироваться на энергопотребление процессоров, то нужно констатировать, что Broadwell имеет существенно более низкое энергопотребление в сравнении с Haswell.

Тесты из пакета iXBT Application Benchmark 2015

Начнем с тестов, входящих в состав бенчмарка iXBT Application Benchmark 2015. Отметим, что интегральный результат производительности мы рассчитывали как среднее геометрическое результатов в логических группах тестов (видеоконвертирование и видеообработка, создание видеоконтента и т. д.). Для расчета результатов в логических группах тестов использовалась та же самая референсная система, что и в бенчмарке iXBT Application Benchmark 2015.

Полные результаты тестирование приведены в таблице. Кроме того, мы приводим результаты тестирования по логическим группам тестов на диаграммах в нормированном виде. За референсный принимается результат процессора Core i7-4790K.

Логическая группа тестовXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
Видеоконвертирование и видеообработка, баллы364,3316,7272,6280,5314,0
MediaCoder x64 0.8.33.5680, секунды 125,4144,8170,7155,4132,3
SVPmark 3.0, баллы 3349,62924,62552,72462,22627,3
Создание видеоконтента, баллы302,6264,4273,3264,5290,9
Adobe Premiere Pro CC 2014.1, секунды503,0579,0634,6612,0556,9
Adobe After Effects CC 2014.1.1 (Test #1), секунды666,8768,0802,0758,8695,3
Adobe After Effects CC 2014.1.1 (Test #2), секунды330,0372,2327,3372,4342,0
Photodex ProShow Producer 6.0.3410, секунды436,2500,4435,1477,7426,7
Обработка цифровых фотографий, баллы295,2258,5254,1288,1287.0
Adobe Photoshop CC 2014.2.1, секунды677,5770,9789,4695,4765,0
ACDSee Pro 8, секунды289,1331,4334,8295,8271,0
Векторная графика, баллы150,6130,7140,6147,2177,7
Adobe Illustrator CC 2014.1.1, секунды341,9394,0366,3349,9289,8
Аудиообработка, баллы231,3203,7202,3228,2260,9
Adobe Audition CC 2014.2, секунды452,6514,0517,6458,8401,3
Распознавание текста, баллы302,4263,6205,8269,9310,6
Abbyy FineReader 12, секунды181,4208,1266,6203,3176,6
Архивирование и разархивирование данных, баллы228,4203,0178,6220,7228,9
WinRAR 5.11 архивирование, секунды105,6120,7154,8112,6110,5
WinRAR 5.11 разархивирование, секунды7,38,18,297,47,0
Интегральный результат производительности, баллы259,1226,8212,8237,6262,7

Итак, как видно по результатам тестирования, по интегральной производительности процессор Intel Xeon E3-1285 v4 практически не отличается от процессора Intel Core i7-4790K. Однако, это интегральный результат по совокупности всех используемых в бенчмарке приложений.

Тем не менее, есть ряд приложений, в которых преимущество на стороне процессора Intel Xeon E3-1285 v4. Это такие приложения, как MediaCoder x64 0.8.33.5680 и SVPmark 3.0 (видеоконвертирование и видеообработка), Adobe Premiere Pro CC 2014.1 и Adobe After Effects CC 2014.1.1 (создание видеоконтента), Adobe Photoshop CC 2014.2.1 и ACDSee Pro 8 (обработка цифровых фотографий). В этих приложениях более высокая тактовая частота процессора Intel Core i7-4790K не дает ему преимущества над процессором Intel Xeon E3-1285 v4.



А вот в таких приложениях, как Adobe Illustrator CC 2014.1.1 (векторная графика), Adobe Audition CC 2014.2 (аудиообработка), Abbyy FineReader 12 (распознавание текста) преимущество оказывается на стороне более высокочастотного процессора Intel Xeon E3-1285 v4. Тут интересно отметить, тесты на основе приложений Adobe Illustrator CC 2014.1.1 и Adobe Audition CC 2014.2 в меньшей степени (в сравнении с другими приложениями) загружают ядра процессора.



И конечно же, есть тесты, в которых процессоры Intel Xeon E3-1285 v4 и Intel Core i7-4790K демонстрируют одинаковую производительность. Например, это тест на основе приложения WinRAR 5.11.

Вообще, нужно отметить, что процессор Intel Core i7-4790K демонстрирует более высокую производительность (в сравнении с процессором Intel Xeon E3-1285 v4) именно в тех приложениях, в которых задействуются не все ядра процессора или загрузка ядер оказывается не полной. В то же время в тестах, где загружены на 100% все ядра процессора, лидерство на стороне процессора Intel Xeon E3-1285 v4.

Расчеты в приложении Dassault SolidWorks 2014 SP3 (Flow Simulation)

Тест на основе приложения Dassault SolidWorks 2014 SP3 с дополнительным пакетом Flow Simulation мы вынесли отдельно, поскольку в этом тесте не используется референсная система, как в тестах бенчмарка iXBT Application Benchmark 2015.

Напомним, что в данном тесте речь идет о гидро/аэродинамических и тепловых расчетах. Всего рассчитывается шесть различных моделей, а результатами каждого подтеста является время расчета в секундах.

Подробные результаты тестирования представлены в таблице.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
conjugate heat transfer, секунды353.7402.0382.3328.7415.7
textile machine, секунды399.3449.3441.0415.0510.0
rotating impeller, секунды247.0278.7271.3246.3318.7
cpu cooler, секунды710.3795.3784.7678.7814.3
halogen floodlight, секунды322.3373.3352.7331.3366.3
electronic components, секунды510.0583.7559.3448.7602.0
Суммарное время расчета, секунды2542,72882,32791,32448,73027,0

Кроме того, мы также приводим нормированный результат скорости расчета (величина, обратная суммарному времени расчета). За референсный принимается результат процессора Core i7-4790K.

Как видно по результатам тестирования, в этих специфических расчетах лидерство на стороне процессоров Broadwell. Все четыре процессора Broadwell демонстрируют более высокую скорость расчета в сравнении с процессором Core i7-4790K. По всей видимости, в этих специфических расчетах сказываются те улучшения исполнительных блоков, которые были реализованы в микроархитектуре Broadwell.

SPECapc for 3ds max 2015

Далее рассмотрим результаты теста SPECapc for 3ds max 2015 для приложения Autodesk 3ds max 2015 SP1. Подробные результаты этого теста представлены в таблице, а нормированные результаты для CPU Composite Score и GPU Composite Score — на диаграммах. За референсный принимается результат процессора Core i7-4790K.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
CPU Composite Score4,523,974,094,514,54
GPU Composite Score2,362,162,352,371,39
Large Model Composite Score1,751,591,681,731,21
Large Model CPU2,622,322,502,562,79
Large Model GPU1,171,081,131,170,52
Interacive Graphics2,452,222,492,461,61
Advanced Visual Styles2,292,082,232,251,19
Modeling1,961,801,941,981,12
CPU Computing3,383,043,153,373,35
CPU Rendering5,995,185,296,015,99
GPU Rendering3,132,863,073,161,74

В тесте SPECapc 3ds for max 2015 лидируют процессоры Broadwell. Причем, если в подтестах, зависящих от производительности CPU (CPU Composite Score), процессоры Core i7-4790K и Xeon E3-1285 v4 демонстрируют равную производительность, то в подтестах, зависящих от производительности графического ядра (GPU Composite Score), все процессоры Broadwell существенно опережают процессор Core i7-4790K.


SPECapc for Maya 2012

Теперь посмотрим на результат еще одного теста трехмерного моделирования — SPECapc for Maya 2012. Напомним, что данный бенчмарк запускался в паре с пакетом Autodesk Maya 2015.

Результаты этого теста представлены в таблице, а нормированные результаты — на диаграммах. За референсный принимается результат процессора Core i7-4790K.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
GFX Score1,961,751,871,911,67
CPU Score5,474,794,765,415,35

В этом тесте процессор Xeon E3-1285 v4 демонстрирует немного более высокую производительность в сравнении с процессором Core i7-4790K, однако, разница не столь существенна, как в пакете SPECapc 3ds for max 2015.


POV-Ray 3.7

В тесте POV-Ray 3.7 (рендеринг трехмерной модели) лидером является процессор Core i7-4790K. В данном случае более высокая тактовая частота (при равном количестве ядер) дает преимущество процессору.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
Render average, PPS1568,181348,811396,31560.61754,48

Cinebench R15

В бенчмарке Cinebench R15 результат оказался неоднозначным. В тесте OpenGL все процессоры Broadwell существенно превосходят процессор Core i7-4790K, что естественно, поскольку в них интегрировано более производительное графическое ядро. А вот в процессорном тесте, наоборот, более производительным оказывается процессор Core i7-4790K.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
OpenGL, fps71,8866,472,577333,5
CPU, cb774667572771850


SPECviewperf v.12.0.2

В тестах пакета SPECviewperf v.12.0.2 результаты определяются преимущественно производительностью графического ядра процессора и, кроме того, оптимизацией видеодрайвера к тем или иным приложениям. Поэтому, в этих тестах процессор Core i7-4790K существенно отстает от процессоров Broadwell.

Результаты тестирования представлены в таблице, а также в нормированном виде на диаграммах. За референсный принимается результат процессора Core i7-4790K.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
catia-0420,5518,9420,1020,9112,75
creo-0116,5615,5215,3315,559,53
energy-010,110,100,100,100,08
maya-0419,4718,3119,8720,322,83
medical-012,161,982,062,151,60
showcase-0110,469,9610,1710,395,64
snx-0212,7211,923,513,553,71
sw-0331,3228,4728,9329,6022,63








SPECwpc v.1.2.

И последний бенчмарк — это специализированный тестовый пакет для рабочих станций SPECwpc v.1.2.

Результаты тестирования представлены в таблице, а также в нормированном виде на диаграммах. За референсный принимается результат процессора Core i7-4790K.

ТестXeon E3-1285 v4Xeon E3-1265L v4Core i5-5675CCore i7-5775CCore i7-4790K
Media and Entertaiment3,333,012,843,262,36
Blender2,432,111,822,382,59
HandBrake2,332,011,872,222,56
LuxRender2,632,241,972,622,86
IOMeter15,915,9816,0715,8716,06
Maya1,731,631,711,680,24
Product Development3,082,732,62,442,49
Rodinia3,22,82,541,862,41
CalculiX1,771,271,491,761,97
WPCcfg2,152,011,981,631,72
IOmeter20,9720,8420,9120,8921,13
catia-041,311,211,281,320,81
showcase-011,020,970,991,000,55
snx-020,690,650,190,190,2
sw-031,511,361,381,41,08
Life Sciences2,732,492,392,612,44
Lammps2,522,312,082,542,29
namd2,472,142,12,462,63
Rodinia2,892,512,232,372,3
Medical-010,730,670,690,720,54
IOMeter11,5911,5111,4911,4511,5
Financial Services2,422,081,952,422,59
Monte Carlo2,552,202,212,552,63
Black Scholes2,572,211,622,562,68
Binomial2,121,831,972,122,44
Energy2,722,462,182,622,72
FFTW1,81,721,521,832,0
Convolution2,972,561,352,983,5
Energy-010,810,770,780,810,6
srmp3,22,832,493,152,87
Kirchhoff Migration3,583,073,123,543,54
Poisson1,791,521,561,412,12
IOMeter12,2612,2412,2212,2712,25
General Operation3,853,63,533,834,27
7Zip2,482,181,962,462,58
Python1,581,591,481,642,06
Octave1,511,311,441,441,68
IOMeter37,2136,9537,237,0337,4

Нельзя сказать, что в этом тесте все однозначно. В некоторых сценариях (Media and Entertaiment, Product Development, Life Sciences) более высокий результат демонстрируют процессоры Broadwell. Есть сценарии (Financial Services, Energy, General Operation), где преимущество на стороне процессора Core i7-4790K либо результаты примерно одинаковые.






Игровые тесты

И в заключение рассмотрим результаты тестирования процессоров в игровых тестах. Напомним, что для тестирования мы использовали следующие игры и игровые бенчмарки:

  • Aliens vs Predator
  • World of Tanks 0.9.5
  • Grid 2
  • Metro: LL Redux
  • Metro: 2033 Redux
  • Hitman: Absolution
  • Thief
  • Tomb Raider
  • Sleeping Dogs
  • Sniper Elite V2

Тестирование проводилось при разрешении экрана 1920×1080 и в двух режимах настройки: на максимальное и минимальное качество. Результаты тестирования представлены на диаграммах. В данном случае результаты не нормируются.

В игровых тестах результаты таковы: все процессоры Broadwell демонстрируют очень близкие результаты, что естественно, поскольку в них используется одно и то же графическое ядро Broadwell GT3e. И самое главное, что при настройках на минимальное качество процессоры Broadwell позволяют комфортно играть (при FPS более 40) в большинство игр (при разрешении 1920×1080).

А вот результат для процессора Core i7-4790K с графическим ядром Haswell GT2 во многих играх оказывается почти в два раза хуже.










Выводы

Топовый процессор Xeon E3-1285 v4 в большинстве приложений обеспечивает практически такую же производительность, как и топовый процессор Haswell (Intel Core i7-4790K). Однако, при этом тактовая частота и энергопотребление процессора Xeon E3-1285 v4 ниже. В тех приложениях, где эффективно загружается графическое ядро, все процессоры с микроархитектурой Broadwell демонстрируют существенно (до двух раз) более высокую производительность в сравнении с процессором Core i7-4790K.

С другой стороны, если в системе используется дискретная графическая карта, то особого смысла в новых процессорах Broadwell просто нет. То есть нет смысла менять Haswell на Broadwell. Да и цена у Broadwell-ов не так, что бы очень привлекательная. К примеру, Intel Core i7-5775C стоит дороже Intel Core i7-4790K.

Впрочем, Intel, похоже, и не делает ставки на настольные процессоры Broadwell. Ассортимент моделей крайне скромный, да и на подходе процессоры Skylake, так что вряд ли процессоры Intel Core i7-5775C и Core i5-5675С будут пользоваться особым спросом.

Серверные процессоры семейства Xeon E3-1200 v4 — это отдельный сегмент рынка. Для большинства обычных домашних пользователей такие процессоры не представляют интереса, а вот в корпоративном секторе рынка эти процессоры, возможно, и будут пользоваться спросом.

www.ixbt.com

Core i5 — Википедия

Материал из Википедии — свободной энциклопедии

Core i5
Центральный процессор

Intel Core i5 750
Производство с сентября 2009 года по настоящее время
Производитель
Частота ЦП 1,2—4,02 ГГц
Скорость DMI 2,5 ГП/с
Технология производства 45—14 нм
Наборы инструкций x86, x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AES, AVX.
Микроархитектура Intel Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Broadwell,Skylake, Kaby Lake, Coffee Lake
Число ядер 2, 4, 6
L2-кэш 256 КБ/ядро
L3-кэш 4, 6, 8 МБ
Разъёмы
Ядра
  • Lynnfield
  • Clarkdale
  • Arrandale
  • Sandy Bridge
  • Haswell
  • Skylake
  • Kaby Lake

Intel Core i5 — семейство процессоров x86-64 от Intel. Позиционируется как семейство процессоров среднего уровня цены и производительности, между более дешёвым Intel Core i3 и более дорогим Core i7. Они имеют встроенный контроллер памяти и поддерживают технологию Turbo Boost (автоматический разгон процессора под сильной нагрузкой ЦП)[1]. Многие имеют встроенный графический процессор. Как и другие процессоры для разъемов LGA 1155/1156, Core i5 соединяются с чипсетом через шину DMI.

Первые Core i5 для настольных компьютеров появились в сентябре 2009 года и используют ядро Lynnfield микроархитектуры Nehalem. В 2010 году появились Core i5 с ядром Clarkdale и со встроенным графическим процессором (в корпусе процессора, но на отдельном кристалле). Мобильные версии Core i5 используют ядро Arrandale. В январе 2011 года было представлено второе поколение процессоров Core с микроархитектурой Sandy Bridge, в том числе Core i5. В данной архитектуре Intel впервые интегрировала графическое ядро в кристалл процессора. В апреле 2012 года появилось третье поколение процессоров Core i5 на ядре Ivy Bridge. В 2013 году появились процессоры Intel Core i5 Haswell для разъемов LGA 1150, в том числе с разблокированным множителем, что даёт возможность разгонять процессор. Во втором квартале 2015 года было выпущено промежуточное поколение на микроархитектуре Broadwell, впоследствии не получившее широкого распространения в связи с высокой ценой и скорым выходом следующего поколения, а несколькими месяцами позже, 1 сентября 2015 года, вышло новое поколение — Intel Skylake. Через год, точнее, в январе 2017 года появилось новое поколение процессоров Kaby Lake (Skylake Refresh), также там присутствует серия Core i5, а уже в сентябре 2017 года анонсировано новое поколение процессоров Coffee Lake, они стали доступны для покупки начиная с 5 октября 2017 года.

Логотип процессоров Intel Core i5 Обратная сторона процессора Core i5
Больше не
производятся
Актуальные
Разрядность 32 бита (архитектура x86-32/IA-32):
Разрядность 64 бита (архитектура x86-64):
  • Atom (после 2014 года)
  • Celeron
  • Pentium
  • Core
  • Core 2
  • i3
  • i5
  • i7
  • i9
  • Xeon
    • E3, E5, E7, D, W, X, L, E, PLATINUM, GOLD, SILVER, BRONZE
  • Phi
Списки

ru.wikipedia.org

Спецификации продукции Intel®

Graphics for 10th Generation Intel® Processors

Графические системы для процессоров Intel® 8-го поколения

Графические системы для процессоров Intel® 7-го поколения

Графические системы для процессоров Intel® 6-го поколения

Графические системы для процессоров Intel® 5-го поколения

Графические системы для процессоров Intel® 4-го поколения

Графические системы для процессоров Intel® 3-го поколения

Графические системы для процессоров Intel® 2-го поколения

Графические системы для процессоров Intel® предыдущего поколения

Другие изображения

ark.intel.com

Сравнение производительности процессоров Intel разных поколений / STSS corporate blog / Habr

Почти каждый год на рынок выходит новое поколение центральных процессоров Intel Xeon E5. В каждом поколении попеременно меняются сокет и технологический процесс. Ядер становится всё больше и больше, а тепловыделение понемногу снижается. Но возникает естественный вопрос: «Что даёт новая архитектура конечному пользователю?»

Для этого я решил протестировать производительность аналогичных процессоров разных поколений. Сравнивать решил модели массового сегмента: 8-ядерные процессоры 2660, 2670, 2640V2, 2650V2, 2630V3 и 2620V4. Тестирование с подобным разбросом поколений является не совсем справедливым, т.к. между V2 и V3 стоит разный чипсет, память нового поколения с большей частотой, а самое главное — нет прямых ровесников по частоте среди моделей всех 4-х поколений. Но, в любом случае, это исследование поможет понять в какой степени выросла производительность новых процессоров в реальных приложениях и синтетических тестах.

Выбранная линейка процессоров имеет много схожих параметров: одинаковое количество ядер и потоков, 20 MB SmartCache, 8 GT/s QPI (кроме 2640V2) и количество линий PCI-E равное 40.

Для оценки целесообразности тестирования всех процессоров, я обратился к результатам тестов PassMark.

Ниже привожу сводный график результатов:

Так как частота существенно отличается, сравнивать результаты не совсем корректно. Но несмотря на это, с ходу напрашиваются выводы:

1. 2660 эквивалентен по производительности 2620V4
2. 2670 превосходит по производительности 2620V4 (очевидно, что за счёт частоты)
3. 2640V2 проседает, а 2650V2 бьёт всех (также из-за частоты)

Я поделил результат на частоту и получил некое значение производительности на 1 ГГц:

Вот тут уже результаты получились более интересные и наглядные:

1. 2660 и 2670 — неожиданный для меня разбег в рамках одного поколения, 2670 оправдывает только то, что общая производительность у него весьма высока
2. 2640V2 и 2650V2 — весьма странный низкий результат, который хуже чем у 2660
3. 2630V3 и 2620V4 — единственный логический рост (видимо как раз за счёт новой архитектуры...)

Проанализировав результат я решил отсеять часть неинтересных моделей, которые не имеют ценности для дальнейшего тестирования:

1. 2640V2 и 2650V2 — промежуточное поколение, и не очень удачное, на мой взгляд — убираю из кандидатов
2. 2630V3 — отличный результат, но стоит необоснованно дороже 2620V4, учитывая аналогичную производительность и, к тому же — это уже уходящее поколение процессоров
3. 2620V4 — адекватная цена (сравнивая с 2630V3), высокая производительность и, самое главное — это единственная модель 8-ядерного процессора последнего поколения с Hyper-threading в нашем списке, поэтому однозначно оставляем для дальнейших тестов
4. 2660 и 2670 — отличный результат в сравнении с 2620V4. На мой взгляд, именно сравнение первого и последнего (на данный момент) поколения в линейке Intel Xeon E5 представляет особый интерес. К тому же у нас на складе остались достаточные запасы процессоров первого поколения, поэтому для нас это сравнение весьма актуально.

Стоимость серверов на базе процессоров 2660 и 2620V4 может отличаться почти до 2 крат не в пользу последних, поэтому сравнив их производительность и выбрав сервер на процессорах V1 — можно существенно сократить бюджет на покупку нового сервера. Но об этом предложении я расскажу после результатов тестирования.

Для тестирования было собрано 3 стенда:

1. 2 x Xeon E5-2660, 8 x 8Gb DDR3 ECC REG 1333, SSD Intel Enterprise 150Gb
2. 2 x Xeon E5-2670, 8 x 8Gb DDR3 ECC REG 1333, SSD Intel Enterprise 150Gb
3. 2 x Xeon E5-2620V4, 8 x 8Gb DDR4 ECC REG 2133, SSD Intel Enterprise 150Gb

PassMark PerformanceTest 9.0


При отборе процессоров на тесты я уже пользовался результатами синтетических тестов, но сейчас интересно сравнить эти модели более детально. Сравнение сделал группами: 1-ое поколение против 4-го.

Более подробный отчёт о тестировании позволяет сделать некоторые выводы:

1. Математика, в т.ч. и с плавающей точкой, в основном зависит от частоты. Разница в 100 МГц позволила 2660 опередить 2620V4 в расчётных операциях, в шифровании и компрессии (и это не смотря на существенную разницу в частоте памяти)
2. Физика и вычисления с использованием расширенных инструкций на новой архитектуре выполняются лучше, не смотря на низкую частоту
3. Ну и, разумеется, тест с использованием памяти прошёл в пользу процессоров V4, так как в данном случае соревновались уже разные поколения памяти — DDR4 и DDR3.

Это была синтетика. Посмотрим что покажут специализированные бенчмарки и реальные приложения.

Архиватор 7ZIP


Тут результаты перекликаются с предыдущим тестом — прямая привязка к частоте процессора. При этом не важно, что установлена более медленная память — процессоры V1 уверенно берут первенство частотой.

CINEBENCH R15


CINEBENCH — это бенчмарк для оценки рабочих характеристик компьютера для работы с профессиональной программой для создания анимации MAXON Cinema 4D.

Xeon E5-2670 вытянул по частоте и побил 2620V4. А вот E5-2660, имеющий не столь видимое преимущество по частоте, проиграл процессору 4-го поколения. Отсюда вывод — этот софт использует полезные дополнения новой архитектуры (хотя возможно всё дело в памяти...), но не на столько, чтобы это было решающим фактором.

3DS MAX + V-Ray


Для оценки производительности процессоров при рендеринге в реальном приложении я взял связку: 3ds Max 2016 + V-ray 3.4 + реальная сцена с несколькими источниками света, зеркальными и прозрачными материалами, и картой окружения.

Результаты получились схожи с CINEBENCH: Xeon E5-2670 показал самое низкое время рендеринга, а 2660 не смог обойти 2620V4.

1С: SQL/File


В заключение тестирования прилагаю результаты тестов gilev для 1С.

При тестировании базы с файловым доступом уверенно лидирует процессор E5-2620V4. В таблице приведены средние значения 20 прогонов одного и того же теста. Разница между результатами каждого стенда в случае с файловой базой была не больше 2%.

Однопоточный тест базы SQL показал весьма странные результаты. Разница получилась незначительной, учитывая разную частоту у 2660 и 2670, и разную частоту у DDR3 и DDR4. Была попытка оптимизировать настройки SQL, но результаты оказались хуже, чем было, поэтому я решил тестировать все стенды на базовых настройках.

Результаты многопоточного теста SQL оказались ещё куда более странными и противоречивыми. Максимальная скорость 1 потока в МБ/с была эквивалентна индексу производительности в предыдущем однопоточном тесте.

Следующим параметром была максимальная скорость (всех потоков) — результат получился практически идентичным у всех стендов. Так как результаты разных прогонов сильно колебались (+-5%) — иногда они были у разных стендов с существенным отрывом как в одну так и в другую сторону. Одинаковые средние результаты многопоточного теста SQL наводят меня на 3 мысли:

1. Такая ситуация вызвана неоптимизированной конфигурацией SQL
2. SSD стал узким местом системы и не позволил процессорам разогнаться
3. Разницы между частотой памяти и процессоров под эти задачи почти нет (что крайне маловероятно)

Если у Вас есть достоверные объяснения подобных результатов — прошу Вас поделиться ими в комментариях.

Также оказался необъяснимым результат по параметру «Рекомендуемое кол-во пользователей». Средний результат у 2660 оказался выше всех — и это при низких результатах всех тестов.
По этому вопросу также буду рад увидеть Ваши комментарии.

Выводы


Результаты нескольких разносторонних вычислительных тестов показали, что частота процессора в большинстве случаев оказалась важней поколения, архитектуры и даже частоты памяти. Безусловно есть современный софт, который использует все улучшения новой архитектуры. Например, транскодирование видео иногда производится в т.ч. с использованием инструкций AVX2.0, но это специализированное ПО — а большинство серверных приложений по прежнему привязаны к количеству и частоте ядер.

Разумеется я не заявляю, что разницы между процессорами нет совсем никакой, я лишь хочу отметить, что для определённых приложений нет смысла в «плановом» переходе на новое поколение.

Если Вы со мной не согласны или у Вас есть предложения для тестирования — стенды пока не разобраны, и я буду рад произвести тестирование Ваших задач.

Экономическая выгода


Как я уже писал в начале статьи — мы предлагаем линейку серверов на базе процессоров Xeon E5 первого поколения, которые по стоимости существенно бюджетней серверов на E5-2620V4.
Это такие же новые серверы (не путать с б/у) с гарантией 3 года.

Ниже привожу ориентировочный расчет:

Сервер STSS Flagman RX227.4-008LH в конфигурации 2 х Intel Xeon E5-2620V4 + 8 x 8Gb DDR4 ECC REG в розницу стоит на сегодняшний день 265065р.

Аналогичная конфигурация STSS Flagman EX227.3-008LH на базе 2 х Intel Xeon E5-2660 + 8 x 8Gb DDR3 ECC REG по акции доступна за 175275р.

Читатели Хабра могут получить при заказе дополнительную скидку 5%. Для этого необходимо выбрать нужный форм-фактор корпуса из списка моделей на нашем сайте. Модель EX217.3-004LH выполнена в 1U-корпусе, EX227.3-008LH — 2U, а EX240.3-008LH построена на базе корпуса Tower/4U.
В конфигураторе модели можно подобрать необходимые параметры памяти, дисковой подсистемы и дополнительных устройств. При отправке заявки на расчет необходимо указать промокод HABRAHABR.

Спасибо за внимание! Буду ждать Ваших комментариев и пожеланий по тестам.

Написание статьи и тестирование: Usikoff
Тестирование 1C: sarge74

habr.com

Процессоры Intel Core для настольных ПК

K – процессоры для настольных систем, поддерживающие оверклокинг
S – процессоры для настольных систем с пониженным до 65 Вт расчётным тепловыделением
T – процессоры для настольных систем с расчётным тепловыделением менее 45 Вт
R – процессоры для настольных ПК в корпусе BGA1364 (для мобильных устройств) с высокопроизводительной графикой
X – процессоры для настольных систем серии Extreme
M – двухъядерные процессоры для мобильных компьютеров с расчётным тепловыделением менее 35 Вт
QM – четырёхъядерные процессоры для мобильных компьютеров с расчётным тепловыделением 45 Вт
XM – экстремальные варианты мобильных процессоров с повышенным быстродействием

Буквенный суффикс отсутствует у обычных процессоров для настольных компьютеров.

Частота ядра станд./макс. GHz Стандартная рабочая частота всех ядер / Максимальная частота ядер в режиме Turbo Boost 2.0, в GHz
Ядер / потоков Количество физических ядер / вычислительных потоков или логических CPU, которое "видит" операционная система
Кэш L3, MB Объем кэш-памяти L3 в MB
DDR3, эффект.частота Максимальная эффективная рабочая частота памяти DDR3 в MHz
Макс.объем ОЗУ, GB Максимальный поддерживаемый объем оперативной памяти в GB в двухканальном режиме
Поддержка ECC Поддержка технологии контроля четности (ECC) для коррекции однобитных ошибок памяти
TDP, Вт Максимальное тепловыделение процессора, Вт
Intel® Turbo Boost 2.0 Технология Intel® Turbo Boost автоматически повышает частоту ядер процессора в пределах разрешенного теплового пакета
Intel® Hyper-Threading Технология Intel® Hyper-Threading позволяет ядру процессора выполнять два вычислительных потока одновременно, что значительно ускоряет работу многопоточных приложений
Intel® Smart Cache Технология Intel® Smart Cache динамически распределяет кэш-память 3-го уровня между ядрами процессора в зависимости от их загрузки
Intel® AES-NI Advanced Encryption Standard New Instructions (AES-NI) - набор инструкций процессора, которые обеспечивают быстрое и надежное шифрование данных по стандарту AES
Intel® Vpro Технология Intel® Vpro включает аппаратные средства защиты и дистанционного управления компьютером
Intel® VT-x Технология Intel® Virtualization (Intel® VT-x) обеспечивает аппаратную поддержку виртуализации со стороны процессора, повышая производительность и надежность
Intel® VT-d Технология Intel® Virtualization Technology for Directed I/O (Intel® VT-d) повышает производительность устройств ввода/вывода в виртуальных средах
Intel® VT-x EPT Технология Intel® VT-x Extended Page Tables (Intel® VT-x EPT) обеспечивает ускорение работы виртуализованных приложений с интенсивным использованием памяти
Intel® TSX-NI Технология Intel® Transactional Synchronization Extensions New Instructions (Intel® TSX-NI) ускоряет выполнение параллельных операций с помощью контроля блокировки ПО
Intel® TXT Технология Intel® Trusted Execution ( Intel® TXT) - это набор аппаратных расширений для процессора и чипсета с соответствующим ПО для повышения безопасности платформы
Intel® AVX Технология Intel® Advanced Vector Extensions (Intel® AVX) - набор команд для повышения производительности вычислений за счет ипользования операций над векторами
Intel® My WiFi Технология Intel® My WiFi обеспечивает беспроводное подключение к устройствам с поддержкой WiFi, таким как принтеры, стереосистемы и т.д.
Overclocking Возможность повышения тактовой частоты процессора за счет изменения процессорного множителя
Intel® SpeedStep® Технология Intel® SpeedStep® позволяет автоматически переключать уровень напряжения и частоты процессора в зависимости от нагрузки
Термоконтроль Технологии термоконтроля защищают процессор и систему от сбоя в результате перегрева с помощью функций управления температурным режимом
Intel® SIPP Программа Intel® Stable Image Platform (Intel ® SIPP) обеспечивает стандартизацию аппаратной платформы ПК на протяжении как минимум 15 месяцев
Intel® HD Graphics Версия встроенного в процессор графического ядра Intel® HD Graphics
Ст./макс. частота, MHz Номинальная тактовая частота рендеринга графики / Максимальная динамическая частота рендеринга с функцией Dynamic Frequency (МГц)
Объем памяти, GB Максимальный объем видеопамяти графической системы
Intel® Quick Sync Video Технология Intel® Quick Sync Video обеспечивает быструю конвертацию видео для медиапроигрывателей, размещения в сети, а также редактирования и создания видео
Intel® InTru™ 3D Технология Intel® InTRU™ 3D позволяет воспроизводить трехмерные стереоскопические видеоматериалы в формате Blu-ray* с разрешением 1080p, используя интерфейс HDMI* 1.4 и высококачественный звук
Intel® Insider™ Технология Intel® Insider™ позволяет передавать премиум-контент в формате HD на Ultrabook™ и ПК
Intel® Wireless Display Технология Intel® Wireless Display обеспечивает передачу по беспроводной сети фильмов, фотографий, веб-сайтов и других данных на HDTV-монитор
Intel® Clear Video HD Технология Intel® Clear Video HD поддерживает воспроизведение видео в формате HD, повышая качество изображения в играх и фильмах
Поддерж. дисплеев Число поддерживаемых дисплеев
Intel® Core™торговая марка
i7серия
2номер поколения процессоров Intel Core
600индекс производительности
Кбуквенный суффикс

www.team.ru

Так-Так-Так и никакого Тика. Чем отличаются процессоры Intel Core разных поколений на основе одной архитектуры

С появлением процессоров Intel Core седьмого поколения многим стало понятно, что стратегия «Тик-так», которой Интел следовал всё это время, дала сбой. Обещание уменьшить технологический процесс с 14 до 10 нм так и осталось обещанием, началась долгая эпоха «Така» Skylake, во время которой случился Kaby Lake (седьмое поколение), внезапный Coffee Lake (восьмое) с незначительным изменением техпроцесса с 14 нм до 14 нм+ и даже Coffee Lake Refresh (девятое). Кажется, Интелу и правда нужен был небольшой перерыв на кофе. В итоге мы имеем несколько процессоров разных поколений, которые созданы на основе одной микроархитектуры Skylake, с одной стороны. И уверения Интела о том, что каждый новый процессор — лучше прежнего, с другой. Правда, не очень понятно, чем именно…

Поэтому вернёмся к нашим поколениям. И посмотрим, чем же они отличаются.

Kaby Lake

Появление процессоров в рознице состоялось в начале 2017 года. Что же нового у этого семейства относительно его предшественника? Прежде всего, это новое графическое ядро — Intel UHD 630. Плюс поддержка технологии памяти Intel Optane (3D Xpoint), а также новый чипсет 200-ой серии (6-ое поколение работало с 100-ой серией). И на этом из действительно интересных новшеств всё.

Coffee Lake

8-ое поколение с кодовым названием Coffee Lake было выпущено в конце 2017 года. В процессорах этого поколения добавили ядер и пропорционально кэша третьего уровня, подняли Turbo Boost на 200 мегагерц, добавили поддержку DDR4-2666 (до этого было DDR4-2400), но отрезали поддержку DDR3. Графическое ядро осталось прежним, но ему накинули 50 MHz. За все повышения частот пришлось расплатиться увеличением теплопакета до 95 ватт. Ну и, конечно, новый чипсет 300-ой серии. Последнее было совсем не обязательно, так как достаточно скоро специалисты смогли запустить это семейство на чипсетах 100-ой серии, хотя представители Интел заявляли, что это невозможно из-за особенностей построения цепей питания. Позднее, правда, Интел официально признал, что был не прав. Так что же нового в 8-ом семействе? По факту больше похоже на обычный рефреш с добавлением ядер и частот.

Coffee Lake Refresh

Ха! А вот нам и рефреш! В четвёртом квартале 2018 года были выпущены процессоры Coffee Lake 9-го поколения, оснащённые аппаратными средствами защиты от некоторых уязвимостей Meltdown/Spectre. Аппаратные изменения, внесённые в новые чипы, защищают от Meltdown V3 и L1 Terminal Fault (L1TF Foreshadow). Изменения в программном обеспечении и микрокоде защищают от атак Spectre V2, Meltdown V3a и V4. Защита от Spectre V1 по-прежнему будет осуществляться исправлениями на уровне операционной системы. Появление исправлений на уровне кристалла должно уменьшить влияние программных патчей на производительность процессоров. Но всю эту радость с защитами Интел реализовала только в процессорах для массового сегмента рынка: i5-9600k, i7-9700k, i9-9900k. Всем остальным, включая серверные решения, аппаратных защит не отсыпали. Впервые в истории потребительских процессоров Intel процессоры Coffee Lake Refresh поддерживают до 128 ГБ оперативной памяти. И всё, больше никаких изменений.

Что мы имеем в сухом остатке? Два года рефрешей, игры с ядрами и частотами, плюс набор мелких улучшений. Очень хотелось объективно оценить и сравнить производительность основных представителей этих семейств. Поэтому, когда у меня под рукой оказался комплект от седьмого до девятого поколения — к нашим i7-7700 и i7-7700k недавно добавились свежие i7-8700, i7-9700k и i9-9900k, я воспользовался ситуацией и заставил пять разных процессоров Intel Core показать, на что они способны.

Тестирование

В тестировании участвуют пять процессоров Intel: i7-7700, i7-7700k, i7-8700, i7-9700k, i9-9900k.

Тактико-технические характеристики платформ

Процессоры Intel i7-8700, i7-9700k и i9-9900k имеют одинаковую базовую конфигурацию:

  • Материнская плата: Asus PRIME h410T (BIOS 1405),
  • Оперативная память: 16 Гб DDR4-2400 MT/s Kingston 2 штуки, итого 32 Гб.
  • SSD-накопитель: 240 Гб Patriot Burst 2 штуки в RAID 1 (привычка, выработанная годами).

Процессоры Intel i7-7700 и i7-7700k также работают на одинаковой платформе:
  • Материнская плата: Asus h210T (BIOS 3805),
  • Оперативная память: 8 Гб DDR4-2400MT/s Kingston 2 штуки, итого 16 Гб.
  • SSD-накопитель: 240 Гб Patriot Burst 2 штуки в RAID 1.

Мы используем сделанные на заказ шасси высотой в 1,5 юнита. В них размещаются четыре платформы.

Программная часть: ОС CentOS Linux 7 x86_64 (7.6.1810).
Ядро: 3.10.0-957.1.3.el7.x86_64
Внесённые оптимизации относительно штатной установки: добавлены опции запуска ядра elevator=noop selinux=0.

Тестирование производится со всеми патчами от атак Spectre, Meltdown и Foreshadow, бэкпортированными в данное ядро. Не исключено, что результаты тестирования на более новых и актуальных ядрах Linux могут отличаться от полученных, а показатели будут лучше. Но, во-первых, лично мне CentOS 7 милее, а, во-вторых, RedHat активно занимается бэкпортированием новшеств, связанных с поддержкой оборудования, из новых ядер в своё, LTS. На то и надеюсь :-)

Тесты, которые использовал для исследования

  1. Sysbench
  2. Geekbench
  3. Phoronix Test Suite

Тест Sysbench

Sysbench — пакет тестов (или бенчмарков) для оценки производительности разных подсистем компьютера: процессор, оперативная память, накопители данных. Тест многопоточный, на все ядра. В этом тесте я замерял два показателя:

  1. CPU speed events per second — количество выполненных процессором операций за секунду: чем выше значение, тем производительнее система.
  2. General statistics total number of events — общее количество выполненных событий. Чем показатель выше, тем лучше.

Тест Geekbench

Пакет тестов, проводимых в однопоточном и многопоточном режиме. В результате выдаётся некий индекс производительности для обоих режимов. Ниже есть ссылки на результаты тестов. В этом тесте мы рассмотрим два основных показателя:
— Single-Core Score — однопоточные тесты.
— Multi-Core Score — многопоточные тесты.
Единицы измерения: абстрактные «попугаи». Чем больше «попугаев», тем лучше.

Тест Phoronix Test Suite

Phoronix Test Suite — очень богатый набор тестов. Несмотря на то, что были проведены все тесты из пакета pts/cpu, приведу результаты только тех из них, которые лично мне показались особенно интересными, тем более, что результаты упущенных тестов только подкрепляют общую тенденцию.

Почти все представленные тут тесты — многопоточные. Исключение составляют лишь два из них: однопоточные тесты Himeno и LAME MP3 Encoding.

В этих тестах чем показатель больше, тем лучше

  1. Многопоточный тест John the Ripper для подбора паролей. Возьмём криптоалгоритм Blowfish. Измеряет количество операций в секунду.
  2. Тест Himeno — линейный решатель давления Пуассона, использующий точечный метод Якоби.
  3. 7-Zip Compression — тест 7-Zip с использованием p7zip с интегрированной функцией тестирования производительности.
  4. OpenSSL — это набор инструментов, реализующих протоколы SSL (Secure Sockets Layer) и TLS (Transport Layer Security). Измеряет производительность RSA 4096-бит OpenSSL.
  5. Apache Benchmark — тест измеряет, сколько запросов в секунду может выдержать данная система при выполнении 1 000 000 запросов, при этом 100 запросов выполняются одновременно.

А в этих если меньше, то лучше
  1. C-Ray тестирует производительность CPU на вычислениях с числами с плавающей запятой. Этот тест является многопоточным (16 потоков на ядро), будет стрелять 8 лучами из каждого пикселя для сглаживания и генерировать изображение 1600x1200. Измеряется время выполнения теста.
  2. Parallel BZIP2 Compression — тест измеряет время, необходимое для сжатия файла (пакет .tar исходного кода ядра Linux) с использованием сжатия BZIP2.
  3. Кодирование аудио- и видеоданных. Тест LAME MP3 Encoding выполняется в один поток, а тест ffmpeg x264 — многопоточный. Измеряется время прохождения теста.

Как видите, набор для тестирования состоит сугубо из синтетических тестов, позволяющих показать разницу между процессорами при выполнении определённых задач, например, щёлканье паролей, кодирование медиаконтента, криптография.

Синтетический тест, в отличие от теста, который проводится в условиях, приближенных к реальности, способен обеспечить определённую чистоту эксперимента. Собственно, поэтому выбор и пал на синтетику.

Не исключено, что при решении частных задач в боевых условиях вы сможете получить крайне интересные и неожиданные результаты, но всё же «общая температура по больнице» будет максимально приближена к тому, что получилось у меня по результатам тестов. Так же не исключено, что при отключении защиты от Spectre/Meltdown при тестировании процессоров 9-ого поколения, я мог бы получить более высокие результаты. Но, забегая вперед, скажу — они и так отлично себя показали.

Спойлер: балом будут править ядра, потоки и частоты.

Ещё до тестирования я внимательно изучил архитектуру семейств этих процессоров, поэтому ожидал, что существенных отличий между подопытными не обнаружится. Причём, не столько существенных, сколько экстраординарных: зачем ждать интересных показателей в тестах, если проводишь измерения на процессорах, построенных, в сущности, на одном ядре. Мои ожидания оправдались, но кое-что всё же оказалось не совсем так, как я думал…

А теперь, собственно, результаты тестов.

Результат вполне закономерный: у кого больше потоков и выше частота, того и баллы. Соответственно, i7-8700 и i9-9900k впереди. Разрыв между i7-7700 и i7-7700k 10% в однопоточном и многопоточном тесте. Отставание i7-7700 от i7-8700 на 38% и от i9-9900k на 49%, то есть почти в 2 раза, но при этом отставание от i7-9700k всего 15%.

Ссылки на результаты тестов:

Intel i7-7700
Intel i7-7700k
Intel i7-8700
Intel i7-9700k
Intel i9-9900k

Результаты тестов из пакета Тhe Phoronix Test Suite

В тесте John The Ripper разница между братьями-двойняшками i7-7700 и i7-7700k в 10% в пользу «k», за счёт разницы в Турбобусте. У процессоров i7-8700 и i7-9700k разница весьма незначительная. i9-9900k обгоняет всех за счёт большего числа потоков и большей тактовой частоты. Двойняшек почти в 2 раза.

Результат теста C-Ray мне кажется самым интересным. Наличие технологии Hyper-Treading у i9-9900k в этом многопоточном тесте даёт лишь незначительный прирост относительно i7-9700k. А вот двойняшки отстали от лидера почти в 2 раза.

В однопоточном тесте Himeno разница не настолько велика. Ощутимый отрыв 8-ого и 9-ого поколения от двойняшек: i9-9900k обгоняет их на 18% и 15% соответственно. Разница же между i7-8700 и i7-9700k на уровне погрешности.

Тест на компрессию 7zip двойняшки проходят на 44-48% хуже, чем лидер i9-9900k. За счёт большего количества потоков i7-8700 обгоняет i7-9700k на 9%. Но этого не хватает, чтобы обогнать i9-9900k, поэтому наблюдаем отставание почти на 18%.

Тест на время сжатия алгоритмом BZIP2 показывает аналогичные результаты: выигрывают потоки.

Кодирование mp3 — «лестница» с максимальным отрывом в 19,5%. А вот в тесте ffmpeg i9-9900k проигрывает i7-8700 и i7-9700k, но обходит двойняшек. Несколько раз переделал этот тест для i9-9900k, но результат всегда одинаковый. Вот это уже неожиданно :-) В многопоточном тесте самый многопоточный из тестируемых процессоров показал такой невысокий результат, ниже чем у 9700k и 8700. Чётких объяснений сему явлению нет, а предположений делать не хочется.

Тест openssl показывает «лестницу» с разрывом между второй и третьей ступенью. Разница между двойняшками и лидером i9-9900k от 42% до 47%. Разрыв же между i7-8700 и i9-9900k 14%. Главное, потоки и частоты.

В тесте Apache i7-9700k обошёл всех, включая i9-9900k (6%). Но в общих чертах разница не существенная, хотя между худшим результатом i7-7700 и лучшим у i7-9700k отрыв в 24%.

В целом, в большинстве тестов лидирует i9-9900k, провал только на ffmpeg. Соберетесь работать с видео, возьмите лучше i7-9700k или i7-8700. На втором месте в общем зачёте i7-9700k, он незначительно отстаёт от лидера, а в тестах ffmpeg и apache даже опережает. Так что его и i9-9900k смело советую тем, у кого регулярно случаются большие наплывы пользователей на сайт. Процессоры подвести не должны. Про видео я уже сказал.

У i7-8700 хорошие показатели по тестам Sysbench, 7zip и ffmpeg.
Во всех тестах i7-7700k лучше i7-7700 от 2% до 14%, в тесте ffmpeg 16%.
Напомню, что никаких оптимизации, кроме указанных в начале, я не делал, а это значит, что при установке чистой системы на свежекупленном у нас дедике, вы получите точно такие же результаты.

Ядра, потоки, частоты — наше всё

В целом, результаты были предсказуемы и ожидаемы. Практически во всех тестах появляется «лестница в небо», демонстрирующая зависимость производительности от количества ядер, потоков и частот: больше вот этого всего — лучше результаты.

Поскольку все испытуемые фактически являются рефрешами одного и того же ядра на одном техпроцессе и не имеют каких-либо фундаментальных архитектурных различий, мы не смогли получить «ошеломляющих» доказательств того, что процессоры качественно отличаются друг от друга.

Разница между процессорами i7-9700k и i9-9900k во всех тестах, кроме Sysbench, стремится к нулю, так как по сути отличаются они лишь наличием технологии Hyper-Threading и сотней дополнительных мегагерц в режиме Turbo Boost у i9-9900k. В тесте же Sysbench как раз наоборот: решает не количество ядер, а количество потоков.
Очень большой разрыв в многопоточных тестах между i7-7700(k) и i9-9900k, местами аж в два раза. Также есть разница между i7-7700 и i7-7700k — лишние 300 MHz добавляют прыткости последнему.

Также не могу говорить о качественном влиянии объёма кэш-памяти на результаты тестов — имеем, что имеем. Тем более, включённая защита семейства Spectre/Meltdown должна изрядно уменьшать влияние его объёма на результаты теста, но это не точно. Если уважаемый читатель потребует «хлеба и зрелищ» от нашего отдела маркетинга, я с удовольствием выкачу вам тестирование с отключенной защитой.

Собственно, если бы меня спросили: а какой процессор ты сам выберешь? — я бы для начала посчитал деньги в кармане, и выбрал тот, на который хватает. Если коротко, то из точки в А в точку Б можно доехать и на «Жигулях», но на «Мерседесе» всё же быстрее и приятней. Процессоры, в основе которых лежит одна архитектура, так или иначе будут справляться с одинаковым спектром задач — кто-то просто хорошо, а кто-то отлично. Да, как показало тестирование, глобальных отличий между ними нет. Но разрыв между i7 и i9 от этого никуда не делся.

При выборе процессора для некоторых частных узкоспециализированных задач, как работа с mp3, компиляция из исходников или рендеринг трёхмерных сцен с обработкой света, имеет смысл ориентироваться на показатели соответствующих тестов. Например, дизайнерам можно сразу смотреть на i7-9700k и i9-9900k, а под сложные вычисления брать процессор с технологией Hyper-Threading, то есть любой, кроме i7-9700k. Тут рулят потоки.

Так что советую выбирать то, что можете себе позволить с учётом спецификации, и будет вам счастье.

В тестировании использовались серверы на базе процессоров i7-7700, i7-7700k, i7-8700k, i7-9700k и i9-9900k с 1dedic.ru. Любой из них можно заказать со скидкой 5% на 3 месяца — обратитесь в отдел продаж с кодовой фразой «Я с Хабра». При оплате за год минус ещё 10%.

Весь вечер на арене Trashwind, системный администратор FirstDEDIC

habr.com

Сокеты процессоров Intel | Losst

Для подключения процессора компьютера к материнской плате используются специальные гнёзда - сокеты. С каждой новой версией процессоры получали всё больше возможностей и функций, поэтому обычно каждое поколение использовало новый сокет. Это сводило на нет совместимость, но зато позволяло реализовать необходимую функциональность.

За последние несколько лет ситуация немного изменилась, и сформировался список сокетов Intel, которые активно используются и поддерживаются новыми процессорами. В этой статье мы собрали самые популярные сокеты процессоров Intel 2017, которые всё ещё поддерживаются.

Содержание статьи:

Что такое сокет?

Перед тем как перейти к рассмотрению сокетов процессоров, давайте попытаемся понять, что это такое. Сокетом называют физический интерфейс подключения процессора к материнской плате. Сокет LGA состоит из ряда штифтов, которые совпадают с пластинками на нижней стороне процессора.

Новым процессорам, обычно, нужен другой набор штифтов, а это значит, что появляется новый сокет. Однако в некоторых случаях процессоры сохраняют совместимость с предыдущими поколениями процессоров Intel. Сокет расположен на материнской плате, и его нельзя обновить без полной замены платы. Это значит, что обновление процессора может потребовать полной пересборки компьютера. Поэтому важно знать, какой сокет используется в вашей системе и что с его помощью можно сделать.

1. LGA 1151

LGA 1151 - это последний сокет Intel. Он был выпущен в 2015 для поколения процессоров Intel Skylake. Эти процессоры использовали техпроцесс 14 нанометров. Поскольку новые процессоры Kaby Lake не были сильно изменены, этот сокет остается всё ещё актуальным. Сокет поддерживается такими материнскими платами: h210, B150, Q150, Q170, h270 и  Z170.  Выход Kaby Lake принес ещё такие платы: B250, Q250, h370, Q270, Z270.

По сравнению с предыдущей версией LGA 1150, здесь появилась поддержка USB 3.0, оптимизирована работа DDR4 и DIMM модулей памяти, добавлена поддержка SATA 3.0. Совместимость с DDR3 была ещё сохранена. Из видео по умолчанию поддерживается DVI, HDMI и DisplayPort, а поддержка VGA может быть добавлена производителями.

Чипы LGA 1151 поддерживают только разгон GPU. Если вы хотите разогнать процессор или память, вам придется выбрать чипсет более высокого класса. Кроме того, была добавлена поддержка Intel Active Management, Trusted Execution, VT-D и Vpro.

В тестах процессоры Skylake показывают лучший результат, чем Sandy Bridge, а новые Kaby Lake ещё на несколько процентов быстрее.

Вот процессоры, которые работают на этом сокете на данный момент:

SkyLake:

  • Pentium - G4400, G4500, G4520;
  • Core i3 - 6100, 6100T, 6300, 6300T, 6320;
  • Core i5 - 6400, 6500, 6600, 6600K;
  • Core i7 - 6700, 6700K.

Kaby Lake:

  • Core i7 7700K, 7700, 7700T
  • Core i5 7600K, 7600, 7600T, 7500, 7500T, 7400, 7400T;
  • Core i3 7350K, 7320, 7300, 7300T, 7100, 7100T, 7101E, 7101TE;
  • Pentium: G4620, G4600, G4600T, G4560, G4560T;
  • Celeron G3950, G3930, G3930T.

2. LGA 1150

Сокет LGA 1150 разработан для предыдущего четвёртого поколения процессоров Intel Haswell в 2013 году. Также он поддерживается некоторыми чипами из пятого поколения. Этот сокет работает с такими материнскими платами: H81, B85, Q85, Q87, H87 и Z87. Первые три процессора можно считать устройствами начального уровня: они не поддерживают никаких продвинутых возможностей Intel.

В последних двух платах добавлена поддержка SATA Express, а также технологии Thunderbolt. Совместимые процессоры:

Broadwell:

  • Core i5 - 5675C;
  • Core i7 - 5775C;

Haswell Refresh

  • Celeron - G1840, G1840T, G1850;
  • Pentium - G3240, G3240T, G3250, G3250T, G3258, G3260, G3260T, G3440, G3440T, G3450, G3450T, G3460, G3460T, G3470;
  • Core i3 - 4150, 4150T, 4160, 4160T, 4170, 4170T, 4350, 4350T, 4360, 4360T, 4370, 4370T;
  • Core i5 - 4460, 4460S, 4460T, 4590, 4590S, 4590T, 4690, 4690K, 4690S, 4690T;
  • Core i7 - 4785T, 4790, 4790K, 4790S, 4790T;

Haswell

  • Celeron - G1820, G1820T, G1830;
  • Pentium - G3220, G3220T, G3420, G3420T, G3430;
  • Core i3 - 4130, 4130T, 4330, 4330T, 4340;
  • Core i5 - 4430, 4430S, 4440, 4440S, 4570, 4570, 4570R, 4570S, 4570T, 4670, 4670K, 4670R, 4670S, 4670T;
  • Core i7 - 4765T, 4770, 4770K, 4770S, 4770R, 4770T, 4771;

3. LGA 1155

Это самый старый сокет в списке для процессоров Intel из поддерживаемых. Он был выпущен в 2011 году для второго поколения Intel Core. Большинство процессоров архитектуры Sandy Bridge работают именно на нём.

Сокет LGA 1155 использовался для процессоров двух поколений подряд, он также совместим с чипами Ivy Bridge. Это значит, что можно было обновиться, не меняя материнской платы, точно так же, как сейчас с Kaby Lake.

Этот сокет поддерживается двенадцатью материнскими платами. Старшая линейка включает B65, H61, Q67, H67, P67 и Z68. Все они были выпущены вместе с выходом Sandy Bridge. Запуск Ivy Bridge принес B75, Q75, Q77, H77, Z75 и Z77. Все платы имеют один и тот же сокет, но на бюджетных устройствах отключены некоторые функции.

Поддерживаемые процессоры:

Ivy Bridge

  • Celeron - G1610, G1610T, G1620, G1620T, G1630;
  • Pentium - G2010, G2020, G2020T, G2030, G2030T, G2100T, G2120, G2120T, G2130, G2140;
  • Core i3 - 3210, 3220, 3220T, 3225, 3240, 3240T, 3245, 3250, 3250T;
  • Core i5 - 3330, 3330S, 3335S, 3340, 3340S, 3450, 3450S, 3470, 3470S, 3470T, 3475S, 3550, 3550P, 3550S, 3570, 3570K, 3570S, 3570T;
  • Core i7 - 3770, 3770K, 3770S, 3770T;

Sandy Bridge

  • Celeron - G440, G460, G465, G470, G530, G530T, G540, G540T, G550, G550T, G555;
  • Pentium - G620, G620T, G622, G630, G630T, G632, G640, G640T, G645, G645T, G840, G850, G860, G860T, G870;
  • Core i3 - 2100, 2100T, 2102, 2105, 2120, 2120T, 2125, 2130;
  • Core i5 - 2300, 2310, 2320, 2380P, 2390T, 2400, 2400S, 2405S, 2450P, 2500, 2500K, 2500S, 2500T, 2550K;
  • Core i7 - 2600, 2600K, 2600S, 2700K.

4. LGA 2011

Сокет LGA 2011 был выпущен в 2011 году после LGA 1155 в качестве сокета для процессоров высшего класса Sandy Bridge-E/EP и Ivy Bridge E/EP. Гнездо разработано для шестиядерных процессоров и для всех процессоров линейки Xeon. Для домашних пользователей будет актуальной материнская плата X79. Все остальные платы рассчитаны на корпоративных пользователей и процессоры Xeon.

В тестах процессоры Sandy Bridge-E и Ivy Bridge-E показывают довольно неплохие результаты: производительность больше на 10-15%.

Поддерживаемые процессоры:

  • Haswell-E Core i7 - 5820K, 5930K, 5960X;
  • Ivy Bridge-E Core i7 - 4820K, 4930K, 4960X;
  • Sandy Bridge-E Core i7 - 3820, 3930K, 3960X, 3970X.

Это были все современные сокеты процессоров intel.

5. LGA 775

Дальше рассмотрим старые сокеты под процессоры Intel. Этот сокет уже не применяется в новых материнских платах, но может до сих пор встречаться у многих пользователей. Он был выпущен в 2006 году.

Он применялся для установки процессоров Intel Pentium 4, Intel Core 2 Duo, Intel Core 2 Quad и многих других, вплоть до выпуска LGA 1366. Такие системы устарели и используют старый стандарт памяти DDR2.

6. LGA 1156

Сокет LGA 1156 был выпущен для новой линейки процессоров в 2008 году. Он поддерживался такими материнскими платами: H55, P55, H57 и Q57. Новые модели процессоров под этот сокет не выходили уже давно.

Поддерживаемые процессоры:

Westmere (Clarkdale)

  • Celeron - G1101;
  • Pentium - G6950, G6951, G6960;
  • Core i3 - 530, 540, 550, 560;
  • Core i5 - 650, 655K, 660, 661, 670, 680.

Nehalem (Lynnfield)

  • Core i5 - 750, 750S, 760;
  • Core i7 - 860, 860S, 870, 870K, 870S, 875K, 880.

7. LGA 1366

LGA 1366 - это версия 1566 для процессоров высшего класса. Поддерживается материнской платой X58. Поддерживаемые процессоры:

Westmere (Gulftown)

  • Core i7 - 970, 980;
  • Core i7 Extreme - 980X, 990X.

Nehalem (Bloomfield)

  • Core i7 - 920, 930, 940, 950, 960;
  • Core i7 Extreme - 965, 975.

Выводы

В этой статье мы рассмотрели поколения сокетов Intel, которые использовались раньше и активно применяются в современных процессорах. Некоторые из них совместимы с новыми моделями, другие же полностью забыты, но ещё встречаются в компьютерах пользователей.

Последний сокет Intel 1151, поддерживается процессорами Skylake и KabyLake. Можно предположить, что процессоры CoffeLake, которые выйдут летом этого года тоже будут использовать этот сокет. Раньше существовали и другие типы сокетов Intel, но они уже встречаются очень редко.

 

losst.ru

Core — Википедия

Эта статья о семействе мобильных процессоров Intel. О микроархитектуре процессоров Intel Core 2 см. статью Intel Core (микроархитектура).

Core (произносится примерно: Ко[р]) — торговая марка микропроцессоров, производимых компанией Intel. Процессоры Core являются преемниками процессоров предыдущего поколения, представленных моделями Pentium и Celeron. Для серверов имеются более «продвинутые» версии процессоров Core под маркой Xeon.

В июне 2009 года компания объявила об упразднении многообразия вариантов данной торговой марки (например, Core 2 Duo, Core 2 Quad, Core 2 Extreme) в пользу трёх ключевых наименований: Core i3, Core i5 и Core i7[1].

Семейство процессоров Intel Core
Марка Стационарные Мобильные
Кодовое
имя
Кол-во
ядер
Дата
выпуска
Кодовое
имя
Кол-во
ядер
Дата
выпуска
Core Duo[2] Версия для настольных компьютеров отсутствует Yonah 2 (65 нм) Январь 2006
Core Solo[3] Версия для настольных компьютеров отсутствует Yonah 1(65 нм) Январь 2006
Core 2 Duo Conroe
Allendale
Wolfdale
2 (65 нм)
2 (65 нм)
2 (45 нм)
Август 2006
Январь 2006
Январь 2008
Merom
Penryn
2 (65 нм)
2 (45 нм)
Июль 2006
Январь 2008
Core 2 Extreme Conroe XE
Kentsfield XE
Yorkfield XE
2 (65 нм)
4 (65 нм)
4 (45 нм)
Июль 2006
Ноябрь 2006
Ноябрь 2007
Merom XE
Penryn XE
Penryn XE
2 (65 нм)
2 (45 нм)
4 (45 нм)
Июль 2007
Январь 2008
Август 2008
Core 2 Quad Kentsfield
Yorkfield
4 (65 нм)
4 (45 нм)
Январь 2007
Март 2008
Penryn 4 (45 нм) Август 2008
Core 2 Solo Версия для настольных компьютеров отсутствует Merom-L
Penryn-3M
1 (65 нм)
1 (45 нм)
Сентябрь 2007
Май 2008
Core i3 Clarkdale 2 (32 нм) 1-й квартал 2010 Arrandale 2 (32 нм) 1-й квартал 2010
Core i5 Lynnfield
Clarkdale
4 (45 нм)
2 (32 нм)
Сентябрь 2009
1-й квартал 2010
Arrandale 2 (32 нм) 1-й квартал 2010
Core i7 Bloomfield
Lynnfield
4 (45 нм)
4 (45 нм)
Ноябрь 2008
Сентябрь 2009
Clarksfield
Arrandale
4 (45 нм)
2 (32 нм)
Сентябрь 2009
1-й квартал 2010
Core i7
Extreme Edition
Bloomfield
Gulftown
4 (45 нм)
6 (32 нм)
Ноябрь 2008
2-й квартал 2010
Clarksfield 4 (45 нм) 3-й квартал 2009

3-й квартал 2010

Core i9 Skylake-X

Coffee Lake-H

10 (14 нм)

12 (14 нм)

14 (14 нм)

16 (14 нм)

18 (14 нм)

Июнь - сентябрь 2017 Skylake-X

Coffee Lake-H

6 (14 нм)

8 (14 нм)

04/30/2019

Список микропроцессоров Intel

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Yonah — кодовое имя первого поколения мобильных процессоров компании Intel, произведённых с использованием техпроцесса 65 нм, основанных на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Общая производительность была увеличена за счёт добавления поддержки SSE3 расширений и усовершенствования поддержки расширений SSE и SSE2. Но при этом общая производительность немного снижается в связи с более медленным кэшем (а точнее, в связи с его высокой латентностью). Дополнительно Yonah поддерживает технологию NX bit.

EM64T (расширения Intel x86-64) не поддерживаются Yonah. Однако EM64T присутствует в наследнике Yonah, Core 2, имеющем кодовое имя Merom.

Многие считали, что такой недостаток, как отсутствие поддержки 64 бит в Yonah, приведёт к значительным ограничениям в перспективе. Однако распространенность тогда 64-битных ОС была ограничена отсутствием спроса на рынке (ситуация начала меняться лишь после 2008 года). К тому же, мало каким ноутбукам требовалась поддержка более 2 Гб оперативной памяти — соответственно, не было необходимости в 64-битной адресации. Отсюда многие люди склонны доверять производителям и продавцам мобильных компьютеров, утверждающим, что поддержка EM64T в данный момент не востребована.

Исходя из этого, некоторые рассматривают Core как временную замену, которая позволила Intel закрыть переход между серией Pentium и 64-битными Intel Core 2 процессорами, которые стали доступны летом 2006 года.

В соответствии с планами Intel по выпуску мобильных процессоров на 2005 год видится, что Intel в основном собирается сфокусироваться на большом энергопотреблении своих p6+ Pentium M и намеревается уменьшить его на 50 % при помощи Yonah. Intel планирует продолжить выпуск настольной (NetBurst) архитектуры с уменьшенным энергопотреблением для производительных мобильных решений и использование процессоров Pentium M/Core для средне- и низкопроизводительных решений с низким энергопотреблением. Данная политика была изменена позже, когда стало тяжело сохранять энергопотребление и при этом наращивать производительность там, где это только возможно. Intel сменил политику и отказался от NetBurst и заменил его на p6+ Pentium M/Core. Это вывело p6+ Pentium M/Core в высокопроизводительные и низкопотребляющие решения.

Платформа Yonah устроена таким образом, что любые обращения к оперативной памяти проходят через северный мост, что увеличивает задержки по сравнению с платформой от компании AMD Turion. Эта слабость присуща всей линейке процессоров Pentium (настольным, мобильным и серверным). Однако синтетические тесты показывают, что огромный кэш 2-го уровня вполне эффективно компенсирует задержки при обращении к оперативной памяти, что минимизирует уменьшение производительности из-за больших задержек в реальных приложениях.

Core Duo[править | править код]

Intel Core Duo был представлен 5 января 2006 года, наряду с другими компонентами платформы Napa. Это первый процессор компании Intel, который используется в компьютерах Apple Macintosh (компьютер, включённый в Apple Developer Transition Kit, использовал процессор Pentium 4, но он не поступал в широкую продажу и предназначался только для нужд разработчиков).

Core Duo имеет два ядра, 2 Мб кэша 2-го уровня (на оба ядра) и шину управления для контроля над кэшем 2-го уровня и системной шиной.

Компоненты управления питанием ядра включают в себя блок температурного контроля, который способен управлять отдельно питанием каждого ядра, добиваясь в результате очень эффективного управления питанием.

В противовес предыдущим заявлениям, Intel Core Duo поддерживает технологию виртуализации от компании Intel под названием Vanderpool, исключая модель T2300E, как показывают Intel Centrino Duo Mobile Technology Performance Brief и Intel’s Processor Number Feature Table.

Технические характеристики

Ядро Core Duo содержит 151 миллион транзисторов, включает в себя общий для обоих ядер 2Мб кэш 2-го уровня. Конвейер Yonah содержит 14 стадий, предсказатель переходов, работающий на частоте от 2,33 до 2,50 ГГц. Обмен данными между кэшем 2-го уровня и ядрами осуществляется посредством арбитражной шины, что уменьшает нагрузку на системную шину. В результате операция обмена данными ядро — кэш 2-го уровня составляет от 10 циклов (Dothan Pentium M) до 14 тактов. С возрастанием тактовых частот начинают очень сильно расти задержки.

Процессоры Intel Core осуществляют соединение с набором системной логики посредством 667 MT/s системной шины (против 533 MT/s системной шины, которая применялась в Pentium M).

Yonah поддерживают наборы системной логики Intel 945GM, 945PM и 945GT. Core Duo и Core Solo используют упаковку FCPGA6 (478 пин, Socket M[уточнить]), но при этом распиновка их не совпадает с распиновкой, использовавшейся в предыдущих Pentium M, соответственно, они требуют новых материнских плат.

Core Solo[править | править код]

Intel Core Solo имеет то же двойное ядро, что и Core Duo, но рабочим является только одно из них. Это решение хорошо востребовано для одноядерных мобильных процессоров, и это позволяет Intel отключением одного из ядер создать новую линейку процессоров, физически выпуская лишь одно ядро. В конечном итоге это позволяет Intel без сильного ущерба для себя сбывать процессоры, у которых одно из ядер оказалось дефектным (ядро просто отключается, и процессор идёт в продажу под маркой Core Solo).

Преимущества и недостатки[править | править код]

Преимущества:

  • два вычислительных ядра без значительного увеличения потребления энергии;
  • выдающаяся производительность;
  • выдающийся коэффициент «производительность на ватт».

Во многих приложениях (с поддержкой обоих ядер) Yonah демонстрирует нехарактерно большое улучшение производительности над своими предшественниками.

Недостатки Yonah в значительной степени наследует от предыдущей архитектуры Pentium M:

  • высокая задержка при обращении к памяти из-за отсутствия на ядре интегрированного контроллера памяти (ещё более усугубляется использованием памяти DDR2)
  • слабая производительность блока операций с плавающий точкой (FPU)
  • отсутствует поддержка 64-bit (EM64T)
  • отсутствует Hyper-threading
  • иногда показывает худшую «производительность на ватт» в однопоточных и слабораспараллеливающихся задачах, по сравнению со своими предшественниками.
Основная статья: Xeon

Производное от Yonah, кодовое имя Sossaman, представлено 14 марта 2006 года как Dual-Core Xeon LV. Sossaman фактически является Yonah, за исключением того, что Sossaman поддерживает конфигурации с двумя процессорными разъёмами (всего 4 ядра).

Процессор Sossaman для серверов, который базируется на ядре Yonah, также является EM64T-совместимым. Для рынка серверов, являющегося более требовательным, все основные ОС уже имеют поддержку EM64T.

Преемник Core, линейка процессоров Intel Core 2, основывается на микроархитектуре Intel Core. Выход Intel Core 2 привёл к прекращению разделения процессоров Intel на настольные и мобильные, процессоры Core 2 будут представлены как двух-, так и одноядерными продуктами для настольных и мобильных компьютеров, в то время как процессоры Intel Core предназначены для ноутбуков. Среди основных отличий Core 2 стоит отметить 64-разрядность и поддержку технологии EM64T, что на практике позволяет использовать в системе более 4 Гб оперативной памяти в 64-битных системах Microsoft. Unix-совместимые системы и некоторые версии Windows NT поддерживают адресацию памяти до 64 Гб и на 32-битных процессорах за счет применения PAE.

Больше не
производятся
Актуальные
Разрядность 32 бита (архитектура x86-32/IA-32):
Разрядность 64 бита (архитектура x86-64):
  • Atom (после 2014 года)
  • Celeron
  • Pentium
  • Core
  • Core 2
  • i3
  • i5
  • i7
  • i9
  • Xeon
    • E3, E5, E7, D, W, X, L, E, PLATINUM, GOLD, SILVER, BRONZE
  • Phi
Списки

ru.wikipedia.org

с 2009 – до наших дней — Дмитрий Заруцкий — Хайп

TechSpot

Процессоры Intel Core i5 – среднеуровневые ЦП, пользующиеся большой популярностью. Они весьма сбалансированы, предлагают достаточно высокий уровень производительности за умеренные деньги, отличаясь от базовых i7 только отсутствием технологии HyperThreading.

Процессоры серии Core i5 впервые появились в 2009 году, после отказа компании от бренда Core 2 Duo, став наследниками этой линейки. С тех пор производитель регулярно обновлял модельный ряд, примерно раз в год выпуская новое поколение. Сейчас прогресс немного замедлился в связи с усложнением освоения новых техпроцессов, но на подходе уже 9-е поколение Core i5.

Анонс новой линейки чипов намечен, по предварительным данным, на 1 октября. А пока предлагаю ознакомиться с историей Core i5, поколениями чипов, их возможностями и особенностиями.

Первое поколение (2009, архитектура Nehalem)

Процессоры Intel Core i5 первого поколения на архитектуре Nehalem выпущены в конце 2009 года. Фактически они стали переходным звеном от серии Core 2 к чипам нового поколения и производились по старому техпроцессу 45 нм, но уже имели 4 ядра на одном кристалле (у C2Q было 2 кристалла по 2 ядра). В серии впущено три модели под номерами i5-750S (со сниженным потреблением), 750 и 760.

© Flipkart

Чипы первого поколения не имели встроенной графики, устанавливались в платы с сокетом 1156 и работали с памятью DDR3. Важным нововведением стал перенос части чипсета (контроллер памяти, шины PCI-E и т.д) в сам процессор, тогда как у предшественников он находился в северном мосте. Также первые Intel Core i5 впервые получили поддержку автоматического разгона Turbo Boost, позволяющую поднимать частоту при неравномерной нагрузке на ядра.

Первое поколение (2010, Westmere)

Архитектура Nehalem была переходной, но уже в 2010 свет увидели процессоры Core i5 Westmere, созданные по техпроцессу 32 нм. Однако они принадлежали к более низкому сегменту, имели по 2 ядра с поддержкой HT (HyperThreading – технология обработки 2 потоков вычислений на 1 ядре, позволяющая процессору работать в 4 потока) и имели нумерацию вида i5-6xx. В серии вышли чипы с номерами 650, 655K (с поддержкой разгона), 660, 661, 670 и 680.

© Hardware Secrets

Особенностью Intel Core i5 этой серии стало появление встроенного GPU. Он не был частью кристалла ЦП, а исполнялся отдельно, по техпроцессу 45 нм. Это был еще один шаг по переносу функций чипсета материнки в процессор. Как и модели серии 700, чипы имели разъем s1156 и работали с памятью DDR3.

Второе поколение (2011, Sandy Bridge)

Архитектура Sandy Bridge – одна из важнейших страниц в истории Intel. Чипы на ней выпускались на старом техпроцессе 32 нм, но получили большие внутренние оптимизации. Это позволило им существенно превзойти предшественников по части удельной производительности: при равной частоте новый чип был намного быстрее старых.

Процессоры этой серии носят название вида Intel Core i5-2ххх. Одна модель под номером 2390T имела два ядра с поддержкой HT, остальные (от 2300 до 2550K) – 4 ядра без HT. Старшие чипы i5-2500K и 2550K имели разблокированный множитель и поддерживали разгон. Они и по сей день трудятся у многих людей, разогнанные до 4,5-5 ГГц, и не спешат уходить на пенсию.

© eBay

Для процессоров Intel Core i5 второго поколения был создан новый сокет 1155, несовместимый со старым. Также новшеством стал перенос GPU на один кристалл с CPU. Контроллер памяти по-прежнему работал с планками DDR3.

Третье поколение (2012, Ivy Bridge)

Ivy Bridge – это вторая версия предыдущей архитектуры. Процессоры этой серии отличались от предшественников новым техпроцессом 22 нм. Однако их внутреннее устройство осталось прежним, поэтому небольшой прирост производительности (пресловутые «+5%») достигался только за счет поднятия частот. Номера моделей – от 3330 до 3570K.

Список моделей Core i5 2 и 3 поколения © Thomasspace

Процессоры третьего поколения ставились во все те же платы с разъемом 1155, работали с памятью DDR3 и принципиально не отличались от предшественников. Зато для оверклокеров изменения стали существенными. Термоинтерфейс между кристаллом и крышкой ЦП заменили с «жидкого металла» (эвтектический сплав легкоплавких металлов) на термопасту, что снизило разгонный потенциал моделей с разблокированным множителем. I5-3470T имел 2 ядра с поддержкой HT, остальные – 4 ядра без HT.

Четвертое поколение (2013, Haswell)

Придерживаясь принципа «тик-так», процессоры Intel Core i5 четвертого поколения были выпущены на том же техпроцессе 22 нм, но получили архитектурные улучшения. Большого прироста производительности добиться не удалось (опять те же 5%), но ЦП стали немного энергоэффективнее. Процессоры Intel Core i5 4 поколения именовались в формате i5-4xxx, с номерами от 4430 до 4690. Модели i5-4570T и TE были двухъядерными, остальные – четырехъядерные.

© GECID.com

Несмотря на минимум изменений, чипы перевели на новый сокет 1150, несовместимый со старым. Работали они с памятью стандарта DDR3. Как и раньше, в серии выходили модели с разблокированным множителем (индекс К), но, из-за термопасты под крышкой, для максимального разгона их нужно было «скальпировать».

Две модели с индексом R (4570R и 4670R) имели улучшенную графику Iris Pro, пригодную для игр, и оснащались 128 МБ памяти eDRAM. Однако они не поставлялись в розницу, так как имели неразъемный сокет BGA (пайка шариками припоя) 1364, и продавались только в составе компактных ПК.

Пятое поколение (2015, Broadwell)

В рамках пятого поколения Intel Core i5 массовые настольные процессоры Intel не выходили. Линейка фактически была переходным этапом, а чипы представляли собой тот же Haswell, но переведенный на новый техпроцесс 14 нм. В серии вышло всего 3 четырехъядерных модели: i5-5575R, 5675C и 5675R.

© AnandTech

Все десктопные i5-5xxx имели улучшенный графический процессор Iris Pro, 128 Мб eDRAM памяти. Модели с индексом R тоже распаивались на плате и продавались только в составе готовых компьютеров. i5-5675C, в отличие от них, устанавливался в обычный сокет 1150 и был совместим со старыми платами.

Шестое поколение (2015, Skylake)

Полноценным обновлением линейки процессоров Intel Core i5 стало шестое поколение. Чипы с архитектурой Skylake выпускались по техпроцессу 14 нм, имели 4 ядра. Модельные номера процессоров – от i5-6400 до 6600K, все ЦП четырехъядерные.

© Phoronix

Большого прироста производительности новая архитектура не дала, но чипы имели ряд изменений. Во-первых, они устанавливались в новый сокет 1151, во-вторых – получили комбинированный контроллер памяти DDR3/DDR4.

В шестом поколении тоже выходили чипы с графикой Iris Pro – i5-6585R и 6685R. Они и сейчас позволяют запускать современные игры (пусть и на низких настройках графики) и сохраняют актуальность. Из-за BGA разъема ЦП с индексом R не продавались отдельно, только в составе готовых ПК.

Седьмое поколение (2017, Kaby Lake)

Седьмое поколение Intel Core i5 почти ничем не отличается от шестого. Техпроцесс остался тот же, 14 нм, архитектура получила лишь косметические улучшения, а небольшой прирост производительности достигнут только за счет повышения частот. Чипы этой серии носят индексы i5-7xxx, номера моделей – от 7400 до 7600K.

© ITNDaily

Разъем процессоров остался прежним (1151), контроллер памяти тоже не изменился, поэтому чипы сохранили совместимость с платами под шестое поколение. Исключение – модель i5-7640K, рассчитанная на сокет 2066 (платы Hi-End сегмента).

Восьмое поколение (2017, Coffee Lake)

После многочисленных «опять +5%» (о величине прироста красноречиво говорит тот факт, что разогнанный Core i5-2500K 2011 года почти не уступает какому-нибудь i5-7500 2011 года) в восьмом поколении Intel прогресс сдвинулся с места. Этому поспособствовала конкуренция со стороны AMD.

Процессоры Intel Core i5 на архитектуре Coffee Lake произведены по уже знакомому техпроцессу 14 нм, архитектурно минимально отличаются от Skylake и Kaby Lake, имеют примерно такую же производительность в расчете на ядро. Однако увеличение числа ядер с 4 до 6 подняло их быстродействие до 1,5 раз на фоне предшественников. В серии выпущены чипы с именами формата i5-8xxx, и номерами от 8400 до 8600K.

© Overclockers

Несмотря на то, что сокет чипов остался прежним (1151), это новая версия разъема, и с платами прошлых поколений Intel Core i5 серии 8xxx не совместимы. Этот факт не позволяет проапгрейдить компьютер на условном i3-6100 или i5-6400, заменив ЦП на новый шестиядерник.


На момент написания статьи самыми современными являются Intel Core i5 восьмого поколения, хотя шестое и седьмое тоже сохраняют актуальность. Однако на подходе – девятое поколение с кодовым названием архитектуры Cannon Lake. К началу 2019 года в продажу поступят минимум 3 модели: i5-9400, 9500 и 9600K.

Ждать от них чего-то революционного не стоит. Как и в случае со Skylake и Kaby Lake, новое поколение является всего лишь косметически улучшенным предыдущим (Coffee Lake), которое, в свою очередь, тоже не было новинкой. Таким образом, все Intel Core i5 с 6 по 9 поколение отличаются между собой только числом ядер, частотами и сокетом.

hype.tech


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.