Самые емкие аккумуляторы


Литий-серный аккумулятор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 февраля 2019; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 февраля 2019; проверки требуют 3 правки.
Литий-серный аккумулятор

Схематический рисунок ЛСА в ходе разряда
Удельная энергоёмкость 250-500 Вт/ч/кг
Долговечность (циклы) >1000
Электродвижущая сила 1,7-2,5 В

Литий-серный аккумулятор (сокращённо — Li-S, ЛСА) — вторичный химический источник тока, в котором катод жидкий с содержанием серы отделён от электролита специальной мембраной.

  • Теоретическая удельная энергоёмкость: до 2600[1]Вт·ч/кг (до 9360 кДж/кг)
  • Удельная энергоёмкость: 250–500 Вт·ч/кг (900-1800 кДж/кг)
  • Удельная энергоплотность: 218[2] Вт·ч/дм3 (785 кДж/дм3)
  • Удельная плотность конструкции: н/д кг/дм3
  • Количество циклов заряд-разряд до потери 20% ёмкости: 1000[3] (1500 без потерь ёмкости, при токах 0,05-1 С[4])
  • Срок хранения: н/д лет
  • Саморазряд при комнатной температуре: н/д % в месяц
  • Напряжение: 2.1[2][5]В; 1,7-2,5[4] В
  • Удельная мощность: н/д Вт/кг (при разряде током н/д С)
  • Диапазон рабочих температур: от -40°C[1]
  • КПД: н/д %
  • Стоимость: достижима менее $100/кВт·ч[4] (10 Вт⋅ч/$)

Аккумулятор сделан многослойным, между анодом и катодом расположены анодные и катодные мембраны и слой электролита. Конструкция такого аккумулятора схожа с литий-ионными аккумуляторами, однако, в отличие от него, литий-серный аккумулятор использует вместе с литиевым анодом серосодержащий катод, за счёт чего увеличивается его удельная зарядовая ёмкость. Другая особенность Li-S — возможность использовать жидкий катод, увеличивая таким образом плотность тока через него[5].

Электро-химическая реакция[править | править код]

Реакция литий-серного аккумулятора совпадает с реакцией натрий-серного аккумулятора, только в данном случае роль натрия выполняет литий[6]:

Разряд
S8 → Li2S8 → Li2S6 → Li2S4 → Li2S3
Заряд
Li2S → Li2S2 → Li2S3 → Li2S4 → Li2S6 → Li2S8 → S8

Примечательна удельная энергоёмкость литий-серных аккумуляторов, составляющая уже у первых образцов до 300 Вт·ч/кг[5]. К другим достоинствам литий-серного аккумулятора можно отнести отсутствие необходимости использовать компоненты защиты, низкая себестоимость, широкий диапазон рабочих температур и общую экологическую безопасность[1].

К недостаткам литий-серного аккумулятора следует отнести очень короткое время жизни (всего 50-60 циклов заряд-разряд)[2]. Однако, последние образцы имеют долговечность 1000 и более циклов[7][8][3][4].

Разработка[править | править код]

Первые образцы подобных аккумуляторов были разработаны в 2004 году компанией Sion Power из США. В 2006 эта компания представила опытный образец аккумулятора размером 11×35×55 мм и ёмкостью 2,2 А⋅ч при напряжении 2,1 В[2][9].

В результате исследований, команде ученых из Стэнфорда удалось стабилизировать время жизни на уровне 100 циклов заряд-разряда, при падении ёмкости на 10-20% от изначальной. Однако примененный учеными способ (добавление полиэтиленгликоля, полуокисленного графена и микрочастиц сажи) приводит к очень высокому разбросу показателей катодов - лучшие из них теряют 10% ёмкости, худшие — 25%[10].

В 2013-м году учёными из Лаборатории Беркли(США) достигнута энергоёмкость 500 Вт·ч/кг и около 250 Вт·ч/кг при заряде/разряде токами 0,05 и 1 C соответственно; долговечность при этом составила не менее 1500 циклов заряда-разряда без потери ёмкости[4].

Использование[править | править код]

Именно такой тип аккумуляторов использовался в августе 2008 года при рекордно высоком и продолжительном полёте на самолёте на солнечных батареях[11].

  1. 1 2 3 Перспективные источники тока.
  2. 1 2 3 4 Построен новый тип сверхъёмкого литиевого аккумулятора. 20.03.2006
  3. 1 2 Li-S battery company OXIS Energy reports 300 Wh/kg and 25 Ah cell, predicting 33 Ah by mid-2015, 500 Wh/kg by end of 2018. 12.11.2014
  4. 1 2 3 4 5 New lithium/sulfur battery doubles energy density of lithium-ion. 01.12.2013
  5. 1 2 3 Литий-серные аккумуляторы для портативных устройств (неопр.) (недоступная ссылка). Дата обращения 2 августа 2010. Архивировано 24 мая 2012 года.
  6. ↑ Tudron, F.B., Akridge, J.R., and Puglisi, V.J. (2004): Lithium-Sulfur Rechargeable Batteries: Characteristics, State of Development, and Applicability to Powering Portable Electronics Архивная копия от 14 июля 2011 на Wayback Machine (Tucson, AZ: Sion Power)  (англ.)
  7. ↑ World-Record Battery Performance Achieved With Egg-Like Nanostructures. 08.01.2013
  8. ↑ Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Январь 2013
  9. ↑ Разработан самый емкий на сегодня аккумулятор
  10. ↑ Графен повысил живучесть ультраёмких батарей. 14.07.2011
  11. ↑ BBS News: «Solar plane makes record flight»  (англ.)

ru.wikipedia.org

какими могут быть аккумуляторы будущего / Mail.ru Group corporate blog / Habr

В последние годы мы часто слышали, что вот-вот — и человечество получит аккумуляторы, которые будут способны питать наши гаджеты неделями, а то и месяцами, при этом очень компактные и быстрозаряжаемые. Но воз и ныне там. Почему до сих пор не появились более эффективные аккумуляторы и какие существуют разработки в мире, читайте под катом.

Сегодня ряд стартапов близки к созданию безопасных компактных аккумуляторов со стоимостью хранения энергии около 100 долларов за кВт⋅ч. Это позволило бы решить проблему электропитания в режиме 24/7 и во многих случаях перейти на возобновляемые источники энергии, а заодно снизило бы вес и стоимость электромобилей.

Но все эти разработки крайне медленно приближаются к коммерческому уровню, что не позволяет ускорить переход с ископаемых на возобновляемые источники. Даже Илон Маск, который любит смелые обещания, был вынужден признать, что его автомобильное подразделение постепенно улучшает литий-ионные аккумуляторы, а не создаёт прорывные технологии.

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков.

Основатель компании SolidEnergy Systems Кичао Ху (Qichao Hu), в течение десяти лет разрабатывавший литий-металлический аккумулятор (анод металлический, а не графитовый, как в традиционных литий-ионных), утверждает, что главная проблема при создании новых технологий хранения энергии заключается в том, что при улучшении какого-то одного параметра ухудшаются остальные. К тому же сегодня существует столько разработок, авторы которых громко утверждают о своём превосходстве, что стартапам очень трудно убедить потенциальных инвесторов и привлечь достаточно средств для продолжения исследований.

Согласно отчёту Lux Research, за последние 8—9 лет компания вложила в исследование хранения энергии около 4 млрд долларов, из которых стартапам, создающим «технологии нового поколения», в среднем досталось по 40 млн долларов. При этом Tesla вложила около 5 млрд долларов в Gigafactory, занимающуюся производством литий-ионных аккумуляторов. Такой разрыв очень трудно преодолеть.

По словам Герда Седера (Gerd Ceder), профессора в области материаловедения Калифорнийского университета в Беркли, создание маленькой производственной линии и решение всех производственных проблем для налаживания выпуска аккумуляторов обходится примерно в 500 млн долларов. Автопроизводители могут годами тестировать новые аккумуляторные технологии, прежде чем решить, приобретать ли создавшие их стартапы. Даже если новая технология выходит на рынок, нужно преодолеть опасный период наращивания объёмов и поиска клиентов. К примеру, компании Leyden Energy и A123 Systems потерпели неудачу, несмотря на перспективность их продуктов, поскольку финансовые потребности оказались выше расчётных, а спрос не оправдал ожиданий. Ещё два стартапа, Seeo и Sakti3, не успели выйти на массовые объёмы производства и значительный уровень дохода и были куплены за гораздо меньшие суммы, чем ожидали первичные инвесторы.

В то же время три основных мировых производителя аккумуляторов — Samsung, LG и Panasonic — не слишком заинтересованы в появлении инноваций и радикальных переменах, они предпочитают незначительно улучшать свою продукцию. Так что все стартапы, предлагающие «прорывные технологии», сталкиваются с основной проблемой, о которой они предпочитают не упоминать: литий-ионные аккумуляторы, разработанные в конце 1970-х, продолжают совершенствоваться.

Но всё же — какие технологии могут прийти на смену вездесущим литий-ионным аккумуляторам?

Литий-воздушные «дышащие» аккумуляторы


В литий-воздушных аккумуляторах в качестве окислителя используется кислород. Потенциально они могут быть в разы дешевле и легче литий-ионных аккумуляторов, а их ёмкость способна оказаться гораздо больше при сравнимых размерах. Главные проблемы технологии: значительная потеря энергии за счёт теплового рассеивания при зарядке (до 30 %) и относительно быстрая деградация ёмкости. Но есть надежда, что в течение 5—10 лет эти проблемы удастся решить. Например, в прошлом году была представлена новая разновидность литий-воздушной технологии — аккумулятор с нанолитическим катодом.

Зарядное устройство Bioo



Это устройство в виде специального горшка для растений, использующего энергию фотосинтеза для зарядки мобильных гаджетов. Причём оно уже доступно в продаже. Устройство может обеспечивать две-три сессии зарядки в день с напряжением 3,5 В и силой тока 0,5 А. Органические материалы в горшке взаимодействуют с водой и продуктами реакции фотосинтеза, в результате получается достаточно энергии для зарядки смартфонов и планшетов.

Представьте себе целые рощи, в которых каждое дерево высажено над таким устройством, только более крупным и мощным. Это позволит снабжать «бесплатной» энергией окружающие дома и будет веской причиной для защиты лесов от вырубки.

Аккумуляторы с золотыми нанопроводниками



В Калифорнийском университете в Ирвайне разработали нанопроводниковые аккумуляторы, которые могут выдерживать более 200 тыс. циклов зарядки в течение трёх месяцев без каких-либо признаков деградации ёмкости. Это позволит многократно увеличить жизненный цикл систем питания в критически важных системах и потребительской электронике.

Нанопроводники в тысячи раз тоньше человеческого волоса обещают светлое будущее. В своей разработке учёные применили золотые провода в оболочке из диоксида марганца, которые помещены в гелеобразный электролит. Это предотвращает разрушение нанопроводников при каждом цикле зарядки.

Магниевые аккумуляторы



В Toyota работают над использованием магния в аккумуляторах. Это позволит создавать маленькие, плотно упакованные модули, которым не нужны защитные корпуса. В долгосрочной перспективе такие аккумуляторы могут быть дешевле и компактнее литий-ионных. Правда, случится это ещё не скоро. Если случится.

Твердотельные аккумуляторы


В обычных литий-ионных аккумуляторах в качестве среды для переноса заряженных частиц между электродами используется жидкий легковоспламеняющийся электролит, постепенно приводящий к деградации аккумулятора.

Этого недостатка лишены твердотельные литий-ионные аккумуляторы, которые сегодня считаются одними из самых перспективных. В частности, разработчики Toyota опубликовали научную работу, в которой описали свои эксперименты с сульфидными сверхионными проводниками. Если у них всё получится, то будут созданы аккумуляторы на уровне суперконденсаторов — они станут полностью заряжаться или разряжаться всего за семь минут. Идеальный вариант для электромобилей. А благодаря твердотельной структуре такие аккумуляторы будут гораздо стабильнее и безопаснее современных литий-ионных. Расширится и их рабочий температурный диапазон — от –30 до +100 градусов по Цельсию.

Учёные из Массачусетского технологического института в содружестве с Samsung также разработали твердотельные аккумуляторы, превосходящие по своим характеристикам современные литий-ионные. Они безопаснее, энергоёмкость выше на 20—30 %, да к тому же выдерживают сотни тысяч циклов перезарядки. Да ещё и не пожароопасны.

Топливные ячейки


Совершенствование топливных ячеек может привести к тому, что смартфоны мы будем заряжать раз в неделю, а дроны станут летать дольше часа. Учёные из Пхоханского университета науки и технологии (Южная Корея) создали ячейку, в которой объединили пористые элементы из нержавеющей стали с тонкоплёночным электролитом и электродами с минимальной теплоёмкостью. Конструкция оказалась надёжнее литий-ионных аккумуляторов и работает дольше них. Не исключено, что разработка будет внедрена в коммерческие продукты, в первую очередь в смартфоны Samsung.

Графеновые автомобильные аккумуляторы



Многие специалисты считают, что будущее — за графеновыми аккумуляторами. В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей.

Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг.

Микросуперконденсаторы, изготовленные с помощью лазера


Учёные из Университета Райса добились прогресса в разработке микросуперконденсаторов. Один из главных недостатков технологии — дороговизна изготовления, но применение лазера может привести к существенному удешевлению. Электроды для конденсаторов вырезаются лазером из пластикового листа, что многократно снижает трудоёмкость производства. Такие аккумуляторы могут заряжаться в 50 раз быстрее литий-ионных, а разряжаются медленнее используемых сегодня суперконденсаторов. К тому же они надёжны, в ходе экспериментов продолжали работать даже после 10 тыс. сгибаний.

Натрий-ионные аккумуляторы


Группа французских исследователей и компаний RS2E разработала натрий-ионные аккумуляторы для ноутбуков, в которых используется обычная соль. Принцип работы и процесс изготовления держатся в секрете. Ёмкость 6,5-сантиметрового аккумулятора — 90 Вт⋅ч/кг, что сравнимо с массовыми литий-ионными, но он выдерживает пока не более 2 тыс. циклов зарядки.

Пенные аккумуляторы



Другая тенденция в разработке технологий хранения энергии — создание трёхмерных структур. В частности, компания Prieto создала аккумулятор на основе субстрата пенометалла (меди). Здесь нет легковоспламеняющегося электролита, у такого аккумулятора большой ресурс, он быстрее заряжается, его плотность в пять раз выше, а также он дешевле и меньше современных аккумуляторов. В Prieto надеются сначала внедрить свою разработку в носимую электронику, но утверждают, что технологию можно будет распространить шире: использовать и в смартфонах, и даже в автомобилях.

Быстрозаряжаемый «наножелток» повышенной ёмкости


Ещё одна разработка Массачусетского технологического института — наночастицы для аккумуляторов: полая оболочка из диоксида титана, внутри которой (как желток в яйце) находится наполнитель из алюминиевой пудры, серной кислоты и оксисульфата титана. Размеры наполнителя могут меняться независимо от оболочки. Применение таких частиц позволило в три раза увеличить ёмкость современных аккумуляторов, а длительность полной зарядки снизилась до шести минут. Также снизилась скорость деградации аккумулятора. Вишенка на торте — дешевизна производства и простота масштабирования.

Алюминий-ионный аккумулятор сверхбыстрой зарядки



В Стэнфорде разработали алюминий-ионный аккумулятор, который полностью заряжается примерно за одну минуту. При этом сам аккумулятор обладает некоторой гибкостью. Главная проблема — удельная ёмкость примерно вдвое ниже, чем у литий-ионных аккумуляторов. Хотя, учитывая скорость зарядки, это не так критично.

Alfa battery — две недели на воде


Если компании Fuji Pigment удастся довести до ума свой алюминий-воздушный аккумулятор Alfa battery, то нас ждёт появление носителей энергии, ёмкость которых в 40 раз больше ёмкости литий-ионных. Более того, аккумулятор перезаряжается доливкой воды, простой или подсоленной. Как утверждают разработчики, на одном заряде Alfa сможет работать до двух недель. Возможно, сначала такие аккумуляторы появятся на электромобилях. Представьте себе автозаправку, на которую вы заезжаете за водой.

Аккумуляторы, которые можно сгибать, как бумагу


Компания Jenax создала гибкий аккумулятор J.Flex, похожий на плотную бумагу. Его даже можно складывать. К тому же он не боится воды и потому очень удобен для использования в одежде. Или представьте себе наручные часы с аккумулятором в виде ремешка. Эта технология позволит и уменьшить размер самих гаджетов, и увеличить носимый объём энергии. Другой сценарий — создание гибких складных смартфонов и планшетов. Нужен экран побольше? Просто разверните сложенный вдвое гаджет.

Как утверждают разработчики, тестовый образец выдерживает 200 тыс. складываний без потери ёмкости.

Эластичные аккумуляторы


Над созданием гибких носителей энергии работают во многих компаниях. А команда учёных из Университета штата Аризона пошла дальше и с помощью особой механической конструкции создала аккумулятор в виде эластичной ленты. Не исключено, что идея будет развита и позволит встраивать аккумуляторы в одежду.

Мочевой аккумулятор



В 2013 году Фонд Билла Гейтса вложился в продолжение исследований Bristol Robotic Laboratory по созданию аккумуляторов, работающих на моче. Весь цимес в использовании «микробных топливных ячеек»: в них содержатся микроорганизмы, расщепляющие мочу и вырабатывающие электричество. Кто знает, возможно, скоро поход в туалет будет не только потребностью, но и в буквальном смысле полезным занятием.

Ryden — углеродные аккумуляторы с быстрой зарядкой


В 2014 году компания Power Japan Plus сообщила о планах по выпуску аккумуляторов, в основе которых лежат углеродные материалы. Их можно было производить на том же оборудовании, что и литий-ионные. Углеродные аккумуляторы должны работать дольше и заряжаться в 20 раз быстрее литий-ионных. Был заявлен ресурс в 3 тыс. циклов зарядки.

Органический аккумулятор, почти даром


В Гарварде была создана технология органических аккумуляторов, стоимость производства которых составляла бы 27 долларов за кВт⋅ч. Это на 96 % дешевле аккумуляторов на основе металлов (порядка 700 долларов за кВт⋅ч). В изобретении применяются молекулы хинонов, практически идентичные тем, что содержатся в ревене. По эффективности органические аккумуляторы не уступают традиционным и могут без проблем масштабироваться до огромных размеров.

Просто добавь песка


Эта технология представляет собой модернизацию литий-ионных аккумуляторов. В Калифорнийском университете в Риверсайде вместо графитовых анодов использовали обожжённую смесь очищенного и измельчённого песка (читай — кварца) с солью и магнием. Это позволило повысить производительность обычных литий-ионных аккумуляторов и примерно втрое увеличить их срок службы.

Быстрозаряжаемые и долгоживущие


В Наньянском технологическом университете (Сингапур) разработали свою модификацию литий-ионного аккумулятора, который заряжается на 70 % за две минуты и служит в 10 раз дольше обычных литий-ионных. В нём анод изготовлен не из графита, а из гелеобразного вещества на основе диоксида титана — дешёвого и широко распространённого сырья.

Аккумуляторы с нанопорами


В Мэрилендском университете в Колледж-Парке создали нанопористую структуру, каждая ячейка которой работает как крохотный аккумулятор. Такой массив заряжается 12 минут, по ёмкости втрое превосходит литий-ионные аккумуляторы такого же размера и выдерживает около 1 тыс. циклов зарядки.

Генерирование электричества


Энергия кожи


Тут речь идёт не столько об аккумуляторах, сколько о способе получения энергии. Теоретически, используя энергию трения носимого устройства (часов, фитнес-трекера) о кожу, можно генерировать электричество. Если технологию удастся достаточно усовершенствовать, то в будущем в некоторых гаджетах аккумуляторы станут работать просто потому, что вы носите их на теле. Прототип такого наногенератора — золотая плёнка толщиной 50 нанометров, нанесённая на силиконовую подложку, содержащую тысячи крошечных ножек, которые увеличивают трение подложки о кожу. В результате возникает трибоэлектрический эффект.

uBeam — зарядка по воздуху


uBeam — любопытный концепт передачи энергии на мобильное устройство с помощью ультразвука. Зарядное устройство испускает ультразвуковые волны, которые улавливаются приёмником на гаджете и преобразуются в электричество. Судя по всему, в основе изобретения лежит пьезоэлектрический эффект: приёмник резонирует под действием ультразвука, и его колебания генерируют энергию.

Схожим путём пошли и учёные из Лондонского университета королевы Марии. Они создали прототип смартфона, который заряжается просто благодаря внешним шумам, в том числе от голосов людей.

StoreDot



Зарядное устройство StoreDot разработано стартапом, появившимся на базе Тель-Авивского университета. Лабораторный образец смог зарядить аккумулятор Samsung Galaxy 4 за 30 секунд. Сообщается, что устройство создано на базе органических полупроводников, изготовленных из пептидов. В конце 2017 года в продажу должен поступить карманный аккумулятор, способный заряжать смартфоны за пять минут.

Прозрачная солнечная панель



В Alcatel был разработан прототип прозрачной солнечной панели, которая помещается поверх экрана, так что телефон можно заряжать, просто положив на солнце. Конечно, концепт не идеален с точки зрения углов обзора и мощности зарядки. Но идея красивая.

Год спустя, в 2014-м, компания Tag Heuer анонсировала новую версию своего телефона для понтов Tag Heuer Meridiist Infinite, у которого между внешним стеклом и самим дисплеем должна была быть проложена прозрачная солнечная панель. Правда, непонятно, дошло ли дело до производства.

habr.com

Разработан аккумулятор с емкостью в 10 раз больше Li-ion

4077

, Текст: Сергей Попсулин

Ученые смогли увеличить срок эксплуатации аккумулятора с кремниевым анодом: спустя 1 тыс. циклов перезарядки он сохранил 97% емкости. Кремниевый анод в перспективе позволит в 10 раз увеличить емкость элементов питания по сравнению с современными решениями.

Ученые из Стэнфордского университета и лаборатории SLAC National Accelerator при Министерстве энергетики США смогли решить проблему быстрой деградации анодов из кремния - перспективного материала, позволяющего хранить в батарее в 10 раз больше заряда по сравнению с графитовым анодом.

Исследователи уже давно пытаются создать надежный кремниевый электрод с длительным сроком действия. Во время зарядки и разрядки кремниевый анод расширяется и сужается, а из-за своей хрупкости, в ходе регулярной деформации быстро трескается и разламывается.

Чтобы решить проблему, ученые предложили создать анод из настолько малых частиц кремния, чтобы им уже не на что было разламываться. Кроме того, они поместили эти наночастицы в углеродную оболочку большего размера в сравнении с самой частицей, таким образом предоставив им пространство для расширения, происходящее во время зарядки.

Используя специальную микроэмульсию, ученые собрали микрочастицы с оболочкой в группы и поместили их в еще одну, более толстую «скорлупу» из углерода.

В результате получилась структура, напоминающая гранат. Каждая батарея содержит множество таких «гранатов». «Такая структура обеспечивает свободное протекание электрического тока», - пояснили исследователи.

Кроме того, в ходе экспериментов удалось выяснить, что аккумулятор с «гранатной» структурой обладает более длинным по сравнению с предыдущими аналогичными проектами жизненным циклом: он сохраняет 97% емкости спустя 1 тыс. циклов перезарядки. Это делает элемент пригодным для коммерческой эксплуатации, заявили ученые.


Аккумулятор с "гранатной" структурой: концептуальная иллюстрация

Новая структура помогла решить и еще одну проблему. Во время эксплуатации батареи с кремниевым анодом в результате реакции с электролитом на электроде образуется клейкая субстанция, которая снижает производительность. В «гранатной» структуре площадь соприкосновения частиц с электролитом в 10 раз меньше. Таким образом, субстанции образуется гораздо меньше.


Наночастицы напоминают зерна в гранате: слева - до зарядки, справа - после зарядки

По словам руководителя проекта Йи Куи (Yi Cui), несмотря на значительный прогресс, о выводе новых батарей на коммерческий рынок говорить пока рано, так как необходимо решить еще две важные проблемы. Во-первых, нужно упростить процесс производства описанных анодов. Во-вторых, нужно найти дешевый источник кремниевых наночастиц. Одним из таких источников может быть рисовая шелуха, которая не используется в пищевой промышленности и на 20% состоит из диоксида кремния. По словам Куи, ее достаточно легко превратить в чистые кремниевые наночастицы, пригодные для батарей.

В ноябре прошлого года ученые разработали другой способ продления срока эксплуатации кремниевого аккумулятора, наделив анод способностью к самовосстановлению.



cnews.ru

Грандиозное тестирование аккумуляторов AA/AAA / LampTest corporate blog / Habr

После моего грандиозного тестирования батареек многие просили провести такие же основательные тесты NiMh-аккумуляторов. За четыре месяца я протестировал 198 аккумуляторов (44 модели AA и 35 моделей AAA).


Обычно в блоге Lamptest.ru я рассказываю о тестировании светодиодных ламп, которые потребляют в 6-10 раз меньше традиционных и позволяют существенно сэкономить на оплате электроэнергии. Сегодня я хочу затронуть другой аспект экономии — использование аккумуляторов вместо батареек.

Аккумуляторы заряжались с помощью зарядных устройств La Crosse BC-700 и JAPCELL BC-4001. Аккумуляторы с ёмкостью выше 1500 mAh заряжались током 700-800 mA, аккумуляторы меньшей ёмкости током 500-600 mA.

Для определения ёмкости аккумуляторы разряжались с помощью анализатора Олега Артамонова. Аккумуляторы с ёмкостью выше 1500 mAh разряжались токами 500 mA и 2500 mA, аккумуляторы меньшей ёмкости — токами 200 mA и 1000 mA.

В основном тестировалось по два экземпляра аккумуляторов каждой модели. Для сравнения я использовал результаты худшего аккумулятора из пары, если же тестировалось четыре аккумулятора, для сравнения я брал предпоследний по ёмкости.

Начнём с самого простого — ёмкости аккумуляторов на средних токах 500/200 mA. Конечно, правильней учитывать ёмкость в ватт-часах, но на всех аккумуляторах указана ёмкость в миллиампер-часах, поэтому я буду использовать их, а все результаты в ватт-часах можно посмотреть в итоговой таблице.

Как видно из результатов тестирования, максимальная ёмкость аккумуляторов АА составляет 2550 mAh. Все аккумуляторы с красивыми числами 2600, 2700, 2800 и 2850 mAh лишь плод деятельности маркетологов. Их реальная ёмкость иногда даже меньше, чем у аккумуляторов тех же производителей с более скромными числами. На некоторых аккумуляторах с указанными большими значениями ёмкости мелким шрифтом указана минимальная ёмкость (например у Ansmann 2700, Panasonic 2700, Maha Powerex 2700 указаны значения минимальной ёмкости 2500 mAh и их реальная ёмкость близка к этому значению).
А вот у AAA всё по-честному. Максимальная указанная ёмкость 1100 mAh и фактическая ёмкость близка к этому значению.

Аккумуляторы Duracell 1300 после первого цикла заряд-разряд показали очень низкие результаты, но после нескольких циклов заряд-разряд показали те результаты, которые я учитываю.
Один из четырёх аккумуляторов Turnigy 2400 LSD имел ёмкость, на 30% меньшую, чем остальные. Предполагаю, что это брак. Его результат не учитывается.
Два аккумулятора Camelion 2800 имели ёмкость 2270 mAh и 2610 mAh (разница 13%). Хоть лучший из пары и оказался самым ёмким из всех аккумуляторов АА, я вынужден использовать данные худшего экземпляра, ведь никто не знает, какие экземпляры могут ещё попасться при покупке.
Китайские аккумуляторы BTY AA 3000 и BTY AAA 1350 имеют настолько низкую ёмкость, что место им только в помойке и в дальнейших тестах я их упоминать не буду.

В отличие от батареек, аккумуляторы нельзя относить к категории хороший/плохой просто по ёмкости, ведь в продаже есть аккумуляторы разных номинальных ёмкостей. Давайте посмотрим, насколько ёмкость протестированных аккумуляторов соответствует заявленной. Если на аккумуляторе указана не только номинальная, но и минимальная ёмкость, я буду исходить из неё. Для сравнения используются данные, полученные при разряде средним током 500/200 mA.

О качестве аккумуляторов можно судить по тому, как отличаются между собой экземпляры.

У большинства аккумуляторов экземпляры отличаются не более, чем на 5%.

В отличие от батареек, аккумуляторы почти не теряют ёмкость при больших токах разряда. Я сравнил ёмкость при токах разряда 2500 mA и 500 ma для аккумуляторов AA, имеющих ёмкость от 1500 mAh и 1000/200 mA для аккумуляторов AAA и аккумуляторов АА, имеющих ёмкость менее 1500 mAh.

Некоторые аккумуляторы на больших токах способны отдавать даже большее количество энергии, чем на малых (у таких аккумуляторов разница между ёмкостью на большом и малом токе больше 100%).

Половина из всех протестированных аккумуляторов изготовлена по технологии LSD (Low Self-Discharge — низкий саморазряд). Эти аккумуляторы продаются уже заряженными. Я измерил их ёмкость сразу после распаковки без предварительной зарядки.

В среднем LSD-аккумуляторы оказались заряжены на 70%. Конечно уровень их заряда зависел не только от качества аккумуляторов, но и от времени и условий их хранения, а дата изготовления есть лишь на некоторых аккумуляторах.

Я протестировал все аккумуляторы через неделю и месяц после зарядки. Результаты через неделю можно посмотреть в общей таблице, а вот результаты через месяц.

Удивительно, но одними из лучших по сохранению заряда в течение месяца оказались не-LSD аккумуляторы Navigator 2100 AA и GP 1000 AAA. Большинство аккумуляторов (как LSD, так и не-LSD) через месяц сохраняют 90% заряда.

Приведу цены на аккумуляторы на 1.11.2015. Опт — оптовая цена в «Источник Бэттэрис», РРЦ — рекомендованная розничная цена, Маг — минимальные цены в магазинах и интернет-магазинах (в основном это остатки, закупленные при более низком курсе валют), $ и € — цены в долларах и евро в зарубежных интернет-магазинах, руб — цены в пересчёте по текущему курсу ($1=64 руб, 1€=70.5 руб). В магазинах hobbyking.com и ru.nkon.nl доставка платная, стоимость самой дешёвой доставки при покупке 12 аккумуляторов включена в цену в таблице.

Рекомендованные розничные цены в России и цены в зарубежных интернет-магазинах часто отличаются более, чем в два раза, поэтому я сделаю два сравнения по ценам.

Первое сравнение — по стоимости 1000 mAh на основе РРЦ и цен в интернет-магазинах, если аккумуляторы не продаются в обычных магазинах.

Лидируют аккумуляторы IKEA, вслед за ними идут аккумуляторы из зарубежных интернет-магазинов PKCELL и Turnigy. Самыми дорогими на основе рекомендованных цен оказались Panasonic Eneloop.

Многие покупают аккумуляторы в зарубежных интернет-магазинах, поэтому второе сравнение я сделал по ценам зарубежных интернет магазинов и минимальным ценам, которые удалось найти в российских магазинах.

IKEA и тут опережает всех, Panasonic Eneloop оказываются совсем не такими дорогими, если их покупать через интернет, а Fujitsu, производящиеся на том же заводе по той же технологии, ещё дешевле.

Для большинства аккумуляторов производители указывают 1000 циклов заряд-разряд, некоторые производители вообще не указывают число циклов (Camelion, Turnigy, GP, Varta). Некоторые аккумуляторы имеют только 500 гарантированных циклов (IKEA LADDA 2000 LSD, Energizer PreCharged 2400, Panasonic Eneloop Pro 2450 LSD, Fujitsu 2550 LSD, IKEA LADDA 750 LSD, Energizer PreCharged 800, Panasonic 750 LSD, Fujitsu 900 LSD, Panasonic Eneloop Pro 900 LSD).
Для AA Panasonic Eneloop 1900 LSD, AAA Panasonic Eneloop 750 LSD, AA Fujitsu 1900 LSD, AAA Fujitsu 800 LSD производители гарантирует 2100 циклов.
Максимальное количество циклов — 3000 гарантируется для аккумуляторов низкой ёмкости AA Panasonic Eneloop Lite 950 LSD и AAA Panasonic Eneloop Lite 550 LSD.

Выводы:

1. Максимальная достижимая ёмкость для NiMh аккумуляторов AA — 2550 mAh, для AAA — 1060 mAh. Все аккумуляторы, на которых написано 2600, 2700, 2800 mAh и более в реальности имеют меньшую ёмкость.
2. Все аккумуляторы AA известных производителей от 950 mAh до 2450 mAh имеют реальную ёмкость не менее 97% от указанной, все аккумуляторы AAА известных производителей от 550 mAh до 1100 mAh имеют реальную ёмкость не менее 94% от указанной.
3. NiMh аккумуляторы в отличие от батареек почти не снижают количество отдаваемой энергии при больших токах разряда.
4. За месяц хранения как обычные, так и LSD аккумуляторы теряют 4-20% заряда.
5. Новые LSD аккумуляторы обычно оказываются заряжены на 70%.

Всю информацию о протестированных аккумуляторах можно посмотреть в файле excel: nadezhin.ru/lj/ljfiles/accu_ammo1.xls. Там есть данные по тестированию всех экземпляров аккумуляторов, ёмкость в ватт-часах, вес и начальное напряжение, штрихкоды, оптовые и розничные цены в рублях, цены в долларах и евро, страны происхождения, результаты всех тестирований, включая ёмкость после недели и месяца хранения.

Фотографии упаковок всех аккумуляторов можно скачать одним архивом: nadezhin.ru/lj/ljfiles/accu.rar

Аккумуляторы для тестирования предоставлены производителями и магазинами:

Ansmann, Duracell, Energizer, Varta, Robiton, GP, Panasonic — оптовой компанией Источник Бэттэрис www.istochnik.ru
Camelion, Duracell, Energizer — оптовой компанией Энергосистемы и Технологии e-s-t.ru
Ikea — компанией Ikea www.ikea.ru
Navigator, Panasonic, Varta — компанией Battery Team batteryteam.ru
Космос — группой компаний «Космоc» kosmos.ru
Fujitsu — российским представительством компании Fujitsu fujitsu-battery.ru
Maha Powerex, IMEDION, Fujitsu, Panasonic Eneloop — интернет-магазином ru.nkon.nl
Turnigy — интернет-магазином HobbyKing www.hobbyking.com

Я потратил четыре месяца на тестирование и три дня на написание этой статьи. Надеюсь, вам это пригодится.

© 2015, Алексей Надёжин

habr.com

IBM создала емкий, безопасный и дешевый аккумулятор со сверхбыстрой зарядкой

6151

, Текст: Дмитрий Степанов

Исследовательское подразделение IBM разработало аккумулятор нового типа. Он дешевле существующих литий-ионных аналогов, менее огнеопасны и заряжаются до 80% за пять минут, а компоненты для их производства можно получить из самой обычной морской воды.

Аккумуляторы без тяжелых металлов

Специалисты IBM Research разработали аккумулятор из новых материалов, который по ряду характеристик значительно превосходит широко распространенные сегодня литий-ионные батареи. Об этом говорится в сообщении, размещенном в блоге исследовательского подразделения компании (IBM Research) на ее официальном сайте.

В сегодняшних аккумуляторах, которые используются в ряде устройств: от фитнес-браслетов и смартфонов до электромобилей, часто применяются тяжелые металлы, в частности кобальт и никель. Например, в литий-ионных аккумуляторах катод (отрицательный электрод) может выполняться из кобальтата лития или никелата лития. Сами по себе эти металлы могут представлять угрозу как здоровью человека, так и окружающей среде. Кроме того, их запасы ограничены, а при добыче кобальта, по данным Financial Times, используются детский труд.

Новая технология IBM предполагает создание аккумулятора на базе трех новых материалов, среди которых тяжелых металлов нет. Химический состав материалов, из которых выполнены анод, катод и жидкий электролит, исследователи не раскрывают, однако уверяют, что необходимые материалы могут быть получены из обыкновенной морской воды и то, что они значительно дешевле используемых в современных литий-ионных батареях.

Преимущества новой технологии

По словам специалистов IBM Research их разработка превосходит литий-ионную технологию по многим важным параметров. Так, если верить ученым, их аккумулятор сможет заряжаться до уровня 80% за пять минут, при этом вероятность воспламенения такого устройства значительно ниже по сравнению с литий-ионными аналогами. У последних меньшая температура возгорания.

Исследователь, работающий с системой дифференциальной электрохимической масс-спектроскопии в IBM Research, которая измеряет количество газа, выделившегося из элемента батареи во время зарядки/разрядки

Энергетическая плотность новинки сопоставима с передовыми образцами литий-ионных аккумуляторов (более 800 Вт*ч/л), а ее энергоэффективность превышает 90%.

Кроме того, исследователи утверждают, что проведенные ими тесты показали возможность применения этой технологии при изготовлении аккумуляторов с весьма продолжительным сроком службы, однако не приводят каких-либо конкретных данных на этот счет.

Сферы применения аккумуляторов IBM

Исследователи полагают, что продукция на основе разработанной ими технологии может найти применение в энергетике, автомобиле- и авиастроении.

Несмотря на то, что исследования находятся на ранней стадии, IBM Research заключила контракты на совместную разработку нового поколения аккумуляторов и инфраструктуры для их совершенствования и производства с Mercedes-Benz Research, Central Glass (производитель электролитов) и Sidus (производитель аккумуляторных батарей).

Не без помощи искусственного интеллекта

IBM Research также сообщает, что в своей работе команда использует технологию искусственного интеллекта (ИИ), называемую семантическим обогащением. Она применяется для дальнейшего улучшения характеристик батареи путем выявления наиболее подходящих и безопасных материалов.

Альтернативные разработки

Существуют и другие технологии, способные заменить собой литиевые аккумуляторы и положить конец их далеко не самым экологичным и этичным производству и утилизации.

В декабре 2018 г. CNews писал о том, что ученые Иллинойского университета в Чикаго разработали новую технологию производства аккумуляторных батарей для мобильных устройств, в основе которой лежит принцип использования неупорядоченных частиц оксида магния и непосредственно магниевого анода.

Еще одна группа американских ученых, на этот раз из Калифорнийского технологического университета, создала аккумулятор на основе фторидов – химических соединений фтора с другими элементами таблицы Менделеева. Подобные АКБ в теории характеризуются способностью держать заряд до восьми раз дольше в сравнении с литий-ионными и литий-полимерными. Опять же, они намного безопаснее оных ввиду неподверженности влиянию повышенной температуры окружающей среды или нагреву во время подзарядки.

В ноябре 2018 г. стало известно, что в Китае стартовало производство аккумуляторов с твердым электролитом, которые в обозримом будущем могут стать частью мобильной техники и транспортных средств. Предполагалось, что они придут на смену литий-ионным батареям за счет большей компактности и безопасности.



cnews.ru

Графеновый аккумулятор. Прорыв в создании устройств хранения энергии

Графеновые аккумуляторы окажут громадное влияние на все сферы повседневной жизни. Для примера, удельная емкость литий-ионного аккумулятора применяемого в настоящее время, составляет 200 Вт/ч на 1 кг веса. Графеновый аккумулятор такого же веса имеет удельную емкость 1000 Вт/ч. Очевидно, что графеновая аккумуляторная батарея установленная, например, в Tesla Model S способна увеличить пробег электромобиля с 334 км до 1013 км на одной подзарядке. Кроме всего прочего такие батареи можно зарядить менее чем за 10 минут. Конечно, чтобы достичь такой скорости заряда необходима мощная зарядная станция, но это уже не такая большая проблема.

 

Графеновый аккумулятор такого же веса как литий-ионный (при 200 Вт/ч на 1 кг веса) имеет удельную емкость 1000 Вт/ч. Такая батарея установленная, например, в Tesla Model S способна увеличить пробег электромобиля с 334 км до 1013 км на одной подзарядке

 

Еще в декабре 2018 года индийская компания Log 9 Materials объявила, что работает над металлическими воздушно-воздушными батареями на основе графена, что в теории может даже привести к появлению электрических транспортных средств, работающих на воде. Металлические воздушные батареи используют металл в качестве анода, воздух (кислород) в качестве катода и воду в качестве электролита. В воздушном катоде батарей используется стержень графена. Поскольку кислород должен использоваться в качестве катода, катодный материал должен быть пористым, чтобы воздух мог проходить, свойство, в котором графен превосходит другие. Согласно Log 9 Materials, графен, используемый в электроде, способен увеличить эффективность батареи в пять раз при стоимости в одну треть.

 

 

 

Новые разработки графеновых аккумуляторов

 

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков. Они считают, что будущее за графеновыми аккумуляторами.

 

Сравнительно недавно Graphenano, компания из Испании, продемонстрировала прототип графен-полимерного аккумулятора обладающего уникальной способностью – требуемое время его заряда в 3 раза меньше, чем для обыденных литий-ионных аккумуляторов. Конечно же успехи этой компании подхлестнули громадный интерес различных производителей, которые стали тотчас предвкушать все выгоды применения таких аккумуляторов.

Эра графеновых аккумуляторов способна кардинальным образом изменить все мировое автомобилестроение.

В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км.  Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей. Графеновые батареи менее громоздкие, чем их литий-ионные аналоги: масса графенового аккумулятора вдвое меньше массы литий-ионного. И что не маловажно, такие батареи не могут взорваться.

 

В конце 2015 года Graphenano открыли завод площадью более 7000 квадратных метров по производству графен-полимерных аккумуляторов в испанском городе Екла, благодаря объединению усилий с группой химиков из Национального университета Кордовы и компанией Grabat Energy. Было создано специальное оборудование для обеспечения 20 сборочных линий на 80 миллионов ячеек. Эти аккумуляторы не будут производить газ и не будут пожароопасными, заявляют в Graphenano, даже короткое замыкание им не будет страшно. Полимер был сертифицирован при сотрудничестве с институтами Декра (Испания) и TUV (Германия).

 

 

 

Графен представляет собой слой атомов углерода толщиной в один атом, расположенный в гексагональной решетке (в виде шестиугольников). Это строительный блок углерода, но графен сам по себе является замечательным веществом, обладающим множеством удивительных свойств, которые постоянно дают ему название «чудо-материал».

Графен - это слой атомов углерода толщиной в один атом, расположенный в гексагональной решетке.

 

 

Как улучшить характеристики существующих аккумуляторов

 

В области аккумуляторов обычные материалы для аккумуляторных электродов (и перспективные) значительно улучшаются при добавлении графена. Графеновая батарея может быть легкой, долговечной и подходящей для накопления энергии большой емкости, а также для сокращения времени зарядки. Это продлит срок службы батареи, что связано с количеством углерода, который нанесен на материал или добавлен к электродам для достижения проводимости, а графен добавляет проводимости, не требуя количества углерода, которое используется в обычных батареях.

 

Графен может улучшить такие свойства батареи, как плотность энергии и форму, различными способами. Так литий-ионные аккумуляторы (и другие типы аккумуляторных батарей) могут быть улучшены путем введения графена в анод аккумулятора и использования проводимости материала и характеристик большой площади поверхности для достижения морфологической оптимизации и производительности.

 

Также было обнаружено, что создание гибридных материалов также может быть полезным для улучшения качества батареи. Например, гибрид катализа оксида ванадия (VO2) и графена может быть использован на литий-ионных катодах и обеспечивает быструю зарядку и разрядку, а также большую стойкость цикла зарядки. В этом случае VO2 обладает высокой энергоемкостью, но плохой электрической проводимостью, что можно решить, используя графен в качестве своего рода структурной «основы», на которой можно присоединить VO2- создавая гибридный материал, который обладает как повышенной емкостью, так и превосходной проводимостью.

 

Исследователи ищут новые типы активного электродного материала, чтобы вывести батареи на новый уровень высокой производительности и долговечности и сделать их более подходящими для больших устройств. Наноструктурированные материалы ионно-литиевых батарей могут обеспечить хорошее решение. По последним данным исследователи из Венского университета и международные ученые разработали новый наноструктурированный анодный материал для ионно-литиевых батарей, который увеличивает емкость и срок службы батарей.

 

2D/3D нанокомпозит на основе смешанного оксида металла и графена, разработанный двумя учеными и их командами, как утверждается, серьезно улучшает электрохимические характеристики литий-ионных аккумуляторов. Основанный на смешанном мезопористом оксиде металла в сочетании с графеном, этот материал может обеспечить новый подход к более эффективному использованию батарей в больших устройствах, таких как электрические или гибридные транспортные средства. Новый электродный материал обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер. Для сравнения, современные литий-ионные аккумуляторы теряют свою эффективность после примерно 1000 циклов зарядки.

 

Устройство графенового аккумулятора. Расщепленный кристалл стремится снова стать объемным. Ученым удается сдерживать двухмерную структуру и заставить работать в виде гальванического элемента. Стабильность зависит от подобранной электронной пары. Устройством аккумулятор напоминает литий-ионные, но вместо графитового слоя внедрен графеновый. Российские исследователи заменили анод оксидом магния. Композиция дешевле, меньше нагревается аккумулятор и уменьшается опасность возгорания.

 

 

Финансовые проблемы реализации научных достижений

 

Проблема создания новых аккумуляторных батарей еще и в том, что сейчас исследованиями в области элементов питания занимается слишком много компаний. Проектов просто огромное количество — от «пенных» и жидких батарей до аккумуляторов с экзотическими соединениями в составе электролита. И явного лидера среди всех этих компаний нет. Особого энтузиазма такая ситуация не вызывает и среди инвесторов, которые не слишком охотно выделяют деньги на новые проекты.

 

А денег требуется много. «Для того, чтобы создать небольшую промышленную линию по производству аккумуляторов, создаваемых по новым технологиям, требуется около $500 млн. И даже, если бы перспективный аккумулятор был создан, перевести научную работу в сферу коммерции не так просто. Разработчики мобильных устройств или производители электромобилей будут тестировать новые батареи годами, прежде, чем принять решение. Инвестиции за это время не окупятся, а компания-разработчик будет убыточной. Ученые утверждают, что наладить промышленную линию стоимостью в $500 млн. сложно, особенно, если бюджет на год составляет $5 млн.

 

И даже в том случае, когда новая технология попадет на рынок, производителю аккумуляторов нового типа придется пережить нелегкий период адаптации и поиска покупателей. Но пока что до этого этапа никто не доходил. Так, компании Leyden Energy и A123 Systems, разработавшие новые, вполне перспективные технологии, так и не вышли на рынок. Им просто не хватило для этого денег. Еще два перспективных «энергетических» стартапа, Seeo и Sakti3, были куплены другими компаниями. Причем суммы этих двух сделок были гораздо ниже того, на что рассчитывали первые инвесторы компаний.

Крупнейшие производители электроники, Samsung, LG и Panasonic, заинтересованы больше в совершенствовании текущих своих продуктов и увеличении числа их функций, чем в получении батарей нового типа. Поэтому пока что продолжается процесс оптимизации Li-Ion батарей, созданных еще в 70-х годах прошлого века. Остается надеяться, что у графеновых аккумуляторов все же получится разорвать порочный круг.

 

Графен обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер.

 

 

Что дальше?

 

Сегодня на исследования графена выделено несколько миллиардов долларов, и по прогнозам ученых, этот материал сможет заменить собою кремний в полупроводниковой промышленности. Графен несомненно перевернет мир технологий, в том числе и созданием новых аккумуляторных батарей в ближайшие годы, не в последнюю очередь еще и потому, что он недорог в производстве, и очень распространен в природе. Каждая из стран имеет его в изобилии.

 

Аккумуляторы на основе графена быстро становятся сопоставимыми по эффективности с традиционными твердотельными аккумуляторами. Они все время продвигаются, и скоро они превзойдут своих твердотельных предшественников. Дополнительные преимущества, связанные с присутствием графена в электродах, могут быть полезны, даже если эффективность не так высока. Для батарей, которые обладают аналогичной эффективностью, графеновые батареи являются идеальным выбором, они начали набирать обороты на коммерческом рынке. Ожидается, что мировой рынок графеновых аккумуляторов к 2022 году достигнет 115 миллионов долларов, увеличившись в среднем на 38,4% в течение прогнозируемого периода с рынком с доходом около 38% ».

 

Шведские исследователи из Chalmers смешивают графен и серу для новых литиево-серных батареи, теоретическая плотность энергии которых примерно в пять раз выше, чем у литий-ионных. Новая идея исследователей - пористый губчатый аэрогель, изготовленный из восстановленного оксида графена, который действует как автономный электрод в элементе батареи и позволяет лучше и более эффективно использовать серу.

 

 

Удивительные свойства графена

 

Графен является самым тонким материалом, известным человеку, толщиной в один атом, а также невероятно прочным - примерно в 200 раз прочнее стали. Кроме того, графен является отличным проводником тепла и электричества и обладает интересными способностями поглощения света. В целом графен характеризуется как материал с наивысшей подвижностью электронов среди всех известных материалов. Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами – таким образом графеновый проводник способен проводить электричество практически без потерь.

Графен  – легкий, он весит всего 0,77 миллиграмма на квадратный метр. Поскольку это один 2D-лист, он имеет самую высокую площадь поверхности из всех материалов.

Листы графена являются гибкими, и фактически графен является наиболее растяжимым кристаллом - вы можете растянуть его до 20% от его первоначального размера, не разбивая его. Наконец, идеальный графен также очень непроницаем, и даже атомы гелия не могут пройти через него.

Он также считается экологически чистым и устойчивым, с неограниченными возможностями для многочисленных применений. Это действительно материал, который может изменить мир с неограниченным потенциалом для интеграции практически в любую отрасль.

Когда листы графена предоставлены сами себе, они будут складываться и образовывать графит, который является наиболее стабильной трехмерной формой углерода при нормальных условиях.

Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами. 

 

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

naukatehnika.com

Почему у нас до сих пор нет аккумуляторов нового поколения? / Habr

Буквально каждый месяц в течение многих лет мы слышим о том, что какая-то компания разработала аккумулятор нового типа. В новостях такого рода говорится обычно, что вскоре новый аккумулятор попадет на рынок, а электронные устройства с такими батареями смогут работать едва ли не годы. В начале этого года представители Министерства энергетики США даже заявили, что «найден святой Грааль индустрии аккумуляторов».

К сожалению, на самом деле ничего не меняется. Литий-ионные батареи остаются прежними, продолжительность работы умных часов, телефонов, планшетов и ноутбуков также почти не изменяется. А ведь создать аккумуляторы нового поколения пытаются многие стартапы. Часть добивается каких-то результатов, публикует очередную новость. Затем такой стартап обычно куда-то исчезает. Совпадение или заговор? Скорее первое, чем последнее.

Илон Маск, для которого жизненно важно создать более емкий аккумулятор, пока что занимается лишь оптимизацией существующих технологий производства литий-ионных батарей. Благодаря этому удается увеличить емкость таких аккумуляторов на определенное количество процентов. Но есть предел всему, и оптимизации аккумуляторов в том числе.

Многие исследователи считают, что для получения аккумуляторов нового поколения нужно использовать новые материалы и новые химические процессы. Некоторых успехов удалось добиться выходцам из MIT, основавшим компанию SolidEnergy. Это еще один стартап, который занимается разработкой литий-металлических батарей, емкость которых в два раза выше емкости аналогичных по размеру обычных аккумуляторов. По словам представителей компании, технология готова к коммерческому использованию. В таких аккумуляторах используется металлический анод, вместо графитового. Толщина слоя лития здесь уменьшена примерно в пять раз. Между металлическим анодом и катодом находится гибридный электролит, в состав его входят только негорючие вещества. По словам представителей компании, такие батареи не только более емкие, чем традиционные аккумуляторы, но и более безопасные.

Правда, эта компания занимается разработкой аккумуляторов с 2012 года. Ранее она также заявляла о возможности начала коммерческого использования своих батарей. Сейчас руководитель SolidEnergy заявил о том, что в ноябре компания представит первый аккумулятор для дронов. В 2017 году планируется наладить массовый выпуск батарей для телефонов и носимых устройств. Возможно, так и будет, но SolidEnergy далеко не первый стартап, который рассказывает о том, что аккумуляторы нового типа уже выходят на рынок.

Проблема индустрии еще и в том, что сейчас, как и говорилось выше, исследованиями в области элементов питания занимается слишком много компаний. Проектов просто огромное количество — от «пенных» и жидких батарей до аккумуляторов с экзотическими соединениями в составе электролита. И явного лидера среди всех этих компаний нет. Особого энтузиазма такая ситуация не вызывает и среди инвесторов, которые не слишком охотно дают деньги на новые проекты.

А денег требуется много. «Для того, чтобы создать небольшую промышленную линию по производству аккумуляторов, создаваемых по новым технологиям, требуется около $500 млн», — говорит Гред Седер, профессор материаловедения из Калифорнийского университета (Беркли). Ученый возглавляет группу исследователей, которые пытаются найти новые химические реакции, которые подошли бы для использования в новых аккумуляторах. И даже, если бы перспективный аккумулятор был бы создан, перевести научную работу в сферу коммерции не так просто. Разработчики мобильных устройств или производители электромобилей будут тестировать новые батареи годами, прежде, чем принять решение. Инвестиции за это время не окупятся, а компания-разработчик будет убыточной. Ученый говорит, что наладить промышленную линию стоимостью в $500 млн сложно, особенно, если бюджет на год составляет $5 млн.

И даже в том случае, когда новая технология попадет на рынок, производителю аккумуляторов нового типа придется пережить нелегкий период адаптации и поиска покупателей. Но пока что до этого этапа никто не доходил. Так, компании Leyden Energy и A123 Systems, разработавшие новые, вполне перспективные технологии, так и не вышли на рынок. Им просто не хватило для этого денег. Еще два перспективных «энергетических» стартапа, Seeo и Sakti3, были куплены другими компаниями. Причем суммы этих двух сделок были гораздо ниже того, на что рассчитывали первые инвесторы компаний.

Крупнейшие производители электроники, Samsung, LG и Panasonic, заинтересованы больше в совершенствовании текущих своих продуктов и увеличении числа их функций, чем в получении батарей нового типа. Поэтому пока что продолжается процесс оптимизации Li-Ion батарей, созданных еще в 70-х годах прошлого века. Остается надеяться, что у SolidEnergy все же получится разорвать порочный круг.

habr.com

экономим вместе с Aliexpress / Подборки, перечисления, топ-10, и так далее / iXBT Live

Подборка качественных и недорогих современных аккумуляторов и батарей. На Aliexpress найдутся хорошие элементы питания — все, что нужно для игрушек и гаджетов. Это перезаряжаемые литиевые АА и ААА аккумуляторы, с мощным стабилизированным выходом 1.5В (без просадок напряжения), брендовые аккумуляторы Eneloop от Panasonic, известные бренды KENTLI и SORBO с Алиэкспресс. Эти батарейки не требуют «раскачки», подходят для мощных потребителей (вспышки, машинки р/у), экономичные (отбиваются за 2-3 заряда), не имеют саморазряда и могут храниться и эксплуатироваться долгое время. Выбор простой — не берите дешевые элементы, в основной своей массе это подделки. На Алиэкспресс есть признанные бренды с подтвержденным качеством, например, Eneloop (подороже) или PKCELL (подешевле). А если вам нужны действительно современные варианты, то выбирайте литиевые элементы питания с преобразователем DC-DC внутрии контроллером заряда-разряда. Эти батарейки в свое время нашумели на Кикстартере (успешный стартап), а сейчас массово продаются на Алиэкспресс. 

nanfu tenavolts литиевые аккумуляторы 1,5 В

Лучшие вечные аккумуляторы — современные элементы питания на основе литиевой батареи и DC-DC преобразователя. Внутри установлен контроллер питания и заряда, который выдает длительное время максимальный ток без просадки напряжения и без эффекта разряда. Есть смысл взять комплект в виде специализированного зарядного устройства на 4 слота, четыре АА (пальчиковых) аккумулятора и четыре ААА (мизинчиковых) аккумулятора, а также взять дополнительно лот из нескольких отдельных элементов.

 Аккумуляторные батареи SORBO аА и ААА 1,5 В

Самые популярные и одни из недорогих аккумуляторных батарей формата АА и ААА со встроенным контроллером заряда. В больших аккумуляторах типа АА встроен USB-разъем для питания напрямую от компьютера или от USB-зарядного устройства, а в элементах ААА есть гнездо для подключения MicroUSB провода. Подходит любой стандартный зарядник от смартфона. Батарейки SORBO выдают мощный ток до 1 А длительное время без просадки по напряжению.

 

Элементы 18650 Varicore HE4, 2500 мАч

Размер чуть больше, чем пальчиковые батарейки — элементы формата 18650, которые будут уместны в вейпе, шуруповерте, фонарях, игрушках и прочих устройствах. Выгодные литий-ионные аккумуляторы Varicore HE4 с емкостью 2500 мА/ч,. При желании можно найти элементы 18650 со встроенной USB зарядкой (но наличие дополнительной платы преобразователя снижает емкость на размер DC-DC модуля), или с уже припаянными лепестками для самосборных батарей. Цена отличная ($2 за качественный элемент питания).  

 Аккумуляторы Ni-Mh PKCELL AA 2600Mah 1,2 V

 Аккумуляторы Ni-Mh PKCELL AAA 1000Mah 1,2 V

Самые недорогие из доступных аккумуляторов с честной емкостью. В магазине PKCELL большой выбор аккумуляторов Ni-Mh c напряжением 1.2В. В зависимости от размера (АА или ААА) отличается и емкость батарей, также часть ассортимента есть в наличии на складе в России. Выбирайте необходимое количество с учетом сменного комплекта (например, 4 аккумулятора в игрушку или устройство, и 4 запасных-сменных).

 

 Аккумуляторные батареи KENTLI аА и ААА 1,5 В

Лучшие аккумуляторные элементы KENTLI. Дело в том, не просто выгодно взять лот с зарядкой и комплектом 4+4 АА и ААА аккумуляторами, но очень выгодно одновременно докупить сверху необходимое количество дополнительных аккумуляторов (например, АА и ААА). В магазине есть выгодные лоты без зарядок, до 20 аккумуляторов. В этом случае срабатывают купоны магазина (и купоны Алиэкспресс). А комплекта из 20+ аккумуляторов хватит на долгое время, и вы забудете о покупке обычных щелочных батарей.

 Аккумуляторные батареи GTF аА и ААА 1,5 В

Если лучшие бренды KENTLI или NANFU вы считаете дорогим приобретением, попробуйте сначала недорогие предложения от GTF, SORBO или ZNTER. Эти аккумуляторы на основе литий-ионных элементов с преобразователем и встроенной зарядкой внутри будут очень удобны для любых применений — хоть в фотоаппарат, хоть в игрушки. Аккумуляторы развивают ток до 1А без просадки по напряжению, имеют защиту от переразряда и короткого замыкания, а также их легко заряжать (встроенный USB или MicroUSB разъем).

Аккумуляторы Panasonic Eneloop АА 1.2 В 2550 мАч

Аккумуляторы Panasonic Eneloop PRO ААА 1.2 В 950 мАч

Оригинальные аккумуляторы размеров АА и ААА от Панасоник — линейки Eneloop и Eneloop Pro с малым саморазрядом и повышенной емкостью. Тип аккумуляторов — Ni-Mh c напряжением 1.2В. При выборе будьте внимательны, старайтесь не брать лоты без отзывов и с малым количеством заказов. Сами по себе Pаnasonic Eneloop — одни из самых популярных на Алиэкспресс.

 

 Батарейки-таблетки LR10/LR11/LR41/LR44/CR2032

Практически для всех детских игрушек и для ряда инструментов и устройств требуется частая смена батареек типа «таблетка» («button» battery). Даже компьютерный BIOS требует замены батарейки (СR2032). В этом случае аккумуляторы советовать сложно, просто нужно запасти нужное количество батареек в запас. Прежде всего посмотрите типы батарей, которые вам могут понадобиться — на корпусе батарейки всегда выбит номер или тип, например, AG3, 392A, L736, LR41,  SR41SW, CX41, ag4, LR10, LR11, LR41, LR44, CR2032. Обычно я беру большими лотами — по  10/20/30 штук сразу, это экономит время и деньги.

www.ixbt.com

Аккумуляторы нового поколения

Наверх
  • Рейтинги
  • Обзоры
    • Смартфоны и планшеты
    • Компьютеры и ноутбуки
    • Комплектующие
    • Периферия
    • Фото и видео
    • Аксессуары
    • ТВ и аудио
    • Техника для дома
    • Программы и приложения
  • Новости
  • Советы
    • Покупка
    • Эксплуатация
    • Ремонт
  • Подборки
    • Смартфоны и планшеты
    • Компьютеры
    • Аксессуары
    • ТВ и аудио
    • Фото и видео
    • Программы и приложения
    • Техника для дома
  • Гейминг
    • Игры
    • Железо
  • Еще

ichip.ru

Аккумулятор Panasonic NCR18650G, самый ёмкий аккумулятор размера 18650, реально?

Да друзья, попал ко мне самый ёмкий аккумулятор формфактора 18650, ну по крайней мере так пишут «в интернетах». Заказаны они были именно чтобы проверить это, а также чтобы добавить их в мою «базу данных» по различным аккумуляторам.

Наверное стоит сказать сразу, что аккумуляторы явно не попадают под понятие «бюджетный» так как стоят более семи долларов за штуку, но я допускаю что могут быть сценарии применения, где даже такая цена не отпугнет покупателя. Как пример — высокоемкие повербанки, где важно высокое соотношение емкости к объему и весу.

Внешне они один в один с широко известными NCR18650B, такой же салатовый цвет и такое же оформление.

В процессе подготовки обзора выяснилось, что документации по ним практически нет, поначалу я смог найти только сводную табличку, где присутствуют данные аккумуляторы и приведены краткие характеристики. В частности меня интересовали параметры заряда, потому как разряд обычно стандартен, 0.2С для измерения емкости и 0.5С, 1С, 2С и т.д. как дополнительные тесты.
Кроме того на странице магазина было указано что они рассчитаны на максимальный ток в 4.87A.

Кстати уже из этой таблицы видно, что производитель декларирует типовую емкость как 3550мАч, а не 3600, а базовая емкость вообще составляет 3400мАч.

Но один из моих читателей под ником Qwertus смог мне помочь, предоставив более полный даташит, за что ему большое спасибо. В этом даташите по крайней мере были приведены параметры заряда и некоторые графики, которые я покажу чуть позже.

Как я писал выше, аккумуляторы внешне можно легко спутать с более популярными NCR18650B, они ну очень похожи.
Дата выпуска соответственно коду 8307 — 7 марта 2018 года.
Присутствует матрикс код, потому подделать такие аккумуляторы заметно сложнее. Вообще меня радует, что и другие фирмы стали проставлять на аккумуляторах такой код, он должен быть уникальным для каждого экземпляра, а кроме того позволяет даже неопытному покупателю понять, оригинал перед ним или подделка.
Плюсовой контакт утоплен относительно передней грани корпуса, на минусовом контакте есть характерный точечный выступ.

Размеры и вес, кстати весят они меньше чем заявленные максимальные 48 грамм.

Как и все предыдущие проверенные аккумуляторы, заводской заряд был около 30%, дальше шел обычный «тренировочный» цикл с попутным измерением емкости при токе разряда 500мА, как всегда мое зарядное завысило результат, показав просто нереальные 3700мАч.

Аккумулятор высокоемкий и не рассчитан на большие токи разряда, потому использовалась электронная нагрузка ZKE EBC-A10H имеющая немного выше точность чем более мощная EBC-A20, которую я использую для тестов высокотоковых аккумуляторов.
Также как и всегда аккумулятор был подключен с применением держателя имеющего четырехпроводное подключение для повышения точности измерения.

Для начала заряд.
Производитель указывает параметры заряда — ток 0.3С (1.035А), напряжение окончания 4.2 Вольта, отсечка по падению тока до 69мА. Я заряжал током 1.04А с отсечкой 70мА так как зарядное имеет минимальную дискретность установки в 10мА.

Заряд после полного разряда током 0.2С составил около четырех часов, хотелось бы конечно быстрее, но увы, медленный заряд это плата за большую емкость.

Второй даташит содержал очень интересный график, помимо токов нагрузки 2, 4 и 6 Ампер, был приведен тест разряда током 8 Ампер, что явно больше чем указанные на странице магазина 4.87A.

Я же предпочел не отступать от привычного формата тестирования и потому прогнал эти аккумуляторы при токах нагрузки — 0.2С, 0.5С, 1С, 4.87А и 2С.
При этом за 1С принималось значение в 3450мА вычисленное из указанного зарядного тока 1035мА или 0.3С (1035/3)х10=3450.

Аккумулятор при токе 0.2С выдал 3568мАч, что очень близко к указанным в даташите 3550мАч, но немного не дотягивает до 3600, которые указывают обычно на страницах магазинов.

При токе 4.87А и 6.9А (2С) температура составила 48 и 64 градуса соответственно.

Хотя ток в 8 Ампер очень близок к току 2С (6.9А) я все равно захотел проверить и в таком режиме, но в процессе теста случайно ошибся и выставил ток нагрузки в 10 Ампер, что явно много для этого аккумулятора. Закончилось все резким снижением напряжения и отключением нагрузки, причем после почти сразу напряжение вернулось в норму, я потом немного остудил аккумулятор и продолжил тест. Проблем с аккумулятором выявлено не было, проверочный цикл показал что все в порядке.

Температура при токе разряда 4.87А, 6.9А и 10А (на момент отключения была около 80 градусов).

Данные аккумуляторы довольно «нежные», их не рекомендуется разряжать большими токами, например в даташите есть график зависимости падения емкости от разрядного тока и при токе 6А уже через 300 циклов емкость падает с 3500мАч до 2500, потому вполне возможно что указанные на странице магазина максимальные 4.87А действительного лучше не превышать.

Замер внутреннего сопротивления при получении, после «тренировки» и после всех тестов,

И конечно самое интересное, сравнение с ближайшими конкурентами, в качестве которых выступают:
LG MJ1
Samsung INR18650-35E
LG M36

График приведен для токов 0.2С и 2С, исключение составляет М36, у него график для тока 5А, примерно 1.5С.
Видно что при токе в 0.2С Panasonic NCR18650G действительно имеет емкость больше чем у остальных аккумуляторов, здесь сложно поспорить, но при токе в 2С его явно обгоняет LG MJ1, хотя и с небольшим отрывом.
Но здесь надо отметить, что в отличие от Панасоника его корейский конкурент имеет паспортный максимальный ток разряда в 10 Ампер, т.е. он является более высокотоковым.

По емкости в Втч, при токе 2С NCR18650G вообще оказался на предпоследнем месте, обогнав на 0.01Втч только Samsung 35E, но 35Е разряжали до 2.75 Вольта, потому победа спорная.

На это я хотел уже закончить обзор, но тут на глаза попался аккумулятор с Алиэкспресс, для которого я как-то проводил ресурсный тест. Не хочу писать насчет клонов, подделок и прочего, но как же они похожи, особенно при беглом взгляде.

Подведу итоги.
Да, аккумулятор смог отдать при токе 0.2С больше остальных, но разница настолько мала, что ее запросто можно списать на погрешность измерения. Кроме того, при больших токах нагрузки он начинает заметно отставать от LG MJ1, который изначально рассчитан на больший ток разряда. При этом MJ1 стоит примерно в два раза дешевле, стоит ли NCR18650G этой разницы? Ну не знаю, лично на мой взгляд, нет. NCR18650G конечно хорошие аккумуляторы, спору нет, но как-то хотелось бы больше емкость за эти деньги.

На этом у меня все, надеюсь что было полезно.

mysku.ru

Panasonic NCR18650G, самый ёмкий аккумулятор размера 18650, реально. Аккумуляторы. Технические обзоры. Аккумуляторы

Да друзья, попал ко мне самый емкий аккумулятор формфактора 18650, ну по крайней мере так пишут "в интернетах". Заказаны они были именно чтобы проверить это, а также чтобы добавить их в мою "базу данных" по различным аккумуляторам.

Наверное стоит сказать сразу, что аккумуляторы явно не попадают под понятие "бюджетный" так как стоят более семи долларов за штуку, но я допускаю что могут быть сценарии применения, где даже такая цена не отпугнет покупателя. Как пример - высокоемкие повербанки, где важно высокое соотношение емкости к объему и весу.

Внешне они один в один с широко известными NCR18650B, такой же салатовый цвет и такое же оформление.

В процессе подготовки обзора выяснилось, что документации по ним практически нет, поначалу я смог найти только сводную табличку, где присутствуют данные аккумуляторы и приведены краткие характеристики. В частности меня интересовали параметры заряда, потому как разряд обычно стандартен, 0.2С для измерения емкости и 0.5С, 1С, 2С и т.д. как дополнительные тесты.
Кроме того на странице магазина было указано что они рассчитаны на максимальный ток в 4.87A.

Кстати уже из этой таблицы видно, что производитель декларирует типовую емкость как 3550мАч, а не 3600, а базовая емкость вообще составляет 3400мАч.

Но один из моих читателей под ником Qwertus смог мне помочь, предоставив более полный даташит, за что ему большое спасибо. В этом даташите по крайней мере были приведены параметры заряда и некоторые графики, которые я покажу чуть позже.

Как я писал выше, аккумуляторы внешне можно легко спутать с более популярными NCR18650B, они ну очень похожи.
Дата выпуска соответственно коду 8307 - 7 марта 2018 года.
Присутствует матрикс код, потому подделать такие аккумуляторы заметно сложнее. Вообще меня радует, что и другие фирмы стали проставлять на аккумуляторах такой код, он должен быть уникальным для каждого экземпляра, а кроме того позволяет даже неопытному покупателю понять, оригинал перед ним или подделка.
Плюсовой контакт утоплен относительно передней грани корпуса, на минусовом контакте есть характерный точечный выступ.

Размеры и вес, кстати весят они меньше чем заявленные максимальные 48 грамм.

Как и все предыдущие проверенные аккумуляторы, заводской заряд был около 30%, дальше шел обычный "тренировочный" цикл с попутным измерением емкости при токе разряда 500мА, как всегда мое зарядное завысило результат, показав просто нереальные 3700мАч.

Аккумулятор высокоемкий и не рассчитан на большие токи разряда, потому использовалась электронная нагрузка ZKE EBC-A10H имеющая немного выше точность чем более мощная EBC-A20, которую я использую для тестов высокотоковых аккумуляторов.
Также как и всегда аккумулятор был подключен с применением держателя имеющего четырехпроводное подключение для повышения точности измерения.

Для начала заряд.
Производитель указывает параметры заряда - ток 0.3С (1.035А), напряжение окончания 4.2 Вольта, отсечка по падению тока до 69мА. Я заряжал током 1.04А с отсечкой 70мА так как зарядное имеет минимальную дискретность установки в 10мА.

Заряд после полного разряда током 0.2С составил около четырех часов, хотелось бы конечно быстрее, но увы, медленный заряд это плата за большую емкость.

Второй даташит содержал очень интересный график, помимо токов нагрузки 2, 4 и 6 Ампер, был приведен тест разряда током 8 Ампер, что явно больше чем указанные на странице магазина 4.87A.

Я же предпочел не отступать от привычного формата тестирования и потому прогнал эти аккумуляторы при токах нагрузки - 0.2С, 0.5С, 1С, 4.87А и 2С.
При этом за 1С принималось значение в 3450мА вычисленное из указанного зарядного тока 1035мА или 0.3С (1035/3)х10=3450.

Аккумулятор при токе 0.2С выдал 3568мАч, что очень близко к указанным в даташите 3550мАч, но немного не дотягивает до 3600, которые указывают обычно на страницах магазинов.

При токе 4.87А и 6.9А (2С) температура составила 48 и 64 градуса соответственно.

Хотя ток в 8 Ампер очень близок к току 2С (6.9А) я все равно захотел проверить и в таком режиме, но в процессе теста случайно ошибся и выставил ток нагрузки в 10 Ампер, что явно много для этого аккумулятора. Закончилось все резким снижением напряжения и отключением нагрузки, причем после почти сразу напряжение вернулось в норму, я потом немного остудил аккумулятор и продолжил тест. Проблем с аккумулятором выявлено не было, проверочный цикл показал что все в порядке.

Температура при токе разряда 4.87А, 6.9А и 10А (на момент отключения была около 80 градусов).

Данные аккумуляторы довольно "нежные", их не рекомендуется разряжать большими токами, например в даташите есть график зависимости падения емкости от разрядного тока и при токе 6А уже через 300 циклов емкость падает с 3500мАч до 2500, потому вполне возможно что указанные на странице магазина максимальные 4.87А действительного лучше не превышать.

Замер внутреннего сопротивления при получении, после "тренировки" и после всех тестов,

И конечно самое интересное, сравнение с ближайшими конкурентами, в качестве которых выступают:
LG MJ1
Samsung INR18650-35E
LG M36

График приведен для токов 0.2С и 2С, исключение составляет М36, у него график для тока 5А, примерно 1.5С.
Видно что при токе в 0.2С Panasonic NCR18650G действительно имеет емкость больше чем у остальных аккумуляторов, здесь сложно поспорить, но при токе в 2С его явно обгоняет LG MJ1, хотя и с небольшим отрывом.
Но здесь надо отметить, что в отличие от Панасоника его корейский конкурент имеет паспортный максимальный ток разряда в 10 Ампер, т.е. он является более высокотоковым.

По емкости в Втч, при токе 2С NCR18650G вообще оказался на предпоследнем месте, обогнав на 0.01Втч только Samsung 35E, но 35Е разряжали до 2.75 Вольта, потому победа спорная.

На это я хотел уже закончить обзор, но тут на глаза попался аккумулятор с Алиэкспресс, для которого я как-то проводил ресурсный тест. Не хочу писать насчет клонов, подделок и прочего, но как же они похожи, особенно при беглом взгляде.

Подведу итоги.
Да, аккумулятор смог отдать при токе 0.2С больше остальных, но разница настолько мала, что ее запросто можно списать на погрешность измерения. Кроме того, при больших токах нагрузки он начинает заметно отставать от LG MJ1, который изначально рассчитан на больший ток разряда. При этом MJ1 стоит примерно в два раза дешевле, стоит ли NCR18650G этой разницы? Ну не знаю, лично на мой взгляд, нет. NCR18650G конечно хорошие аккумуляторы, спору нет, но как-то хотелось бы больше емкость за эти деньги.

На этом у меня все, надеюсь что было полезно.

www.kirich.blog


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.