Skylake архитектура процессора


Знакомьтесь, процессор Intel Core 6-го поколения (Skylake) / Intel corporate blog / Habr

Процессоры Intel Core 6-го поколения (Skylake) появились в 2015 году. Благодаря целому ряду усовершенствований на уровне ядра, «системы на кристалле» и на уровне платформы, по сравнению с 14-нм процессором предыдущего поколения (Broadwell), процессор Skylake пользуется огромной популярностью в устройствах самых разных типов, предназначенных для работы, творчества и игр. В этой статье приводится обзор основных возможностей и усовершенствований Skylake, а также новые модели использования, такие как пробуждение по голосовым командам и вход в систему по биометрическим данным в ОС Windows 10.

Архитектура Skylake


Процессоры Intel Core 6-го поколения производятся по 14-нм технологии с учетом более компактного размера процессора и всей платформы для использования в устройствах разных типов. При этом также повышена производительность архитектуры и графики, реализованы расширенные средства безопасности. На рис. 1 показаны эти новые и улучшенные возможности. Фактическая конфигурация в устройствах ОЕМ-производителей может различаться.


Рисунок 1. Архитектура Skylake и сводка усовершенствований[1]

Основные направления развития процессоров


▍Производительность


Повышение производительности напрямую обусловлено предоставлением большего количества инструкций исполняющему блоку: за каждый тактовый цикл выполняется больше инструкций. Такой результат достигается за счет улучшений в четырех категориях [Ibid].
  • Улучшенный внешний интерфейс. Благодаря более точному предсказанию ветвления и повышенной вместимости увеличивается скорость декодирования инструкций, упреждающая выборка работает быстрее и эффективнее.
  • Улучшенное распараллеливание инструкций. За каждый такт обрабатывается больше инструкций, при этом параллельное выполнение инструкции улучшено благодаря более эффективной буферизации.
  • Улучшенные исполняющие блоки (ИБ). Работа исполняющих блоков улучшена по сравнению с прежними поколениями за счет следующих мер:
    • Укорочены задержки.
    • Увеличено количество ИБ.
    • Повышена эффективность электропитания за счет отключения неиспользуемых блоков.
    • Повышена скорость выполнения алгоритмов безопасности.
  • Улучшенная подсистема памяти. В дополнение к улучшению внешнего интерфейса, параллельной обработке инструкций и исполняющих блоков усовершенствована и подсистема памяти в соответствии с пропускной способностью и требованиями производительности перечисленных выше компонентов. Для этого использованы следующие меры:
    • Повышенная пропускная способность загрузки и сохранения.
    • Улучшенный модуль упреждающей выборки.
    • Хранение на более глубоком уровне.
    • Буферы заполнения и обратной записи.
    • Улучшенная обработка промахов страниц.
    • Повышенная пропускная способность при промахах кэша второго уровня.
    • Новые инструкции управления кэшем.


Рисунок 2. Схема микроархитектуры ядра Skylake

На рис. 3 показано улучшение параллельной обработки в процессорах Skylake по сравнению с процессорами прежних поколений (Sandy Bridge — второе, а Haswell — четвертое поколение процессоров Intel Core).


Рисунок 3. Улучшенное распараллеливание по сравнению с прежними поколениями процессоров

Благодаря усовершенствованиям, показанным на рис. 3, производительность процессора возросла на 60 % по сравнению с ПК пятилетней давности, при этом перекодирование видео осуществляется в 6 раз быстрее, а производительность графической подсистемы выросла в 11 раз.


Рисунок 4. Производительность процессора Intel Core 6-го поколения по сравнению с ПК пятилетней давности

  1. Источник: корпорация Intel. На основе результатов процессоров Intel Core i5-6500 и Intel Core i5-650 в тесте SYSmark* 2014.
  2. Источник: корпорация Intel. На основе результатов процессоров Intel Core i5-6500 и Intel Core i5-650 в тесте Handbrake с QSV.
  3. Источник: корпорация Intel. На основе результатов процессоров Intel Core i5-6500 и Intel Core i5-650 в тесте 3DMark* Cloud Gate.

Подробные результаты сравнения производительности настольных ПК и ноутбуков см. по следующим ссылкам:

▍Экономия электроэнергии


Настройка ресурсов на основе динамического потребления

В устаревших системах используется технология Intel SpeedStep для балансировки производительности и расхода электроэнергии с помощью алгоритма подключения ресурсов по запросу. Этот алгоритм управляется операционной системой. Такой подход неплох для постоянной нагрузки, но неоптимален при резком повышении нагрузки. В процессорах Skylake технология Intel Speed Shift передает управление оборудованию вместо операционной системы и дает возможность процессору перейти на максимальную тактовую частоту примерно за 1 мс, обеспечивая более точное управление электропитанием[3].


Рисунок 5. Сравнение технологий Intel Speed Shift и Intel SpeedStep

Показатели ниже показывают скорость реагирования процессора Intel Core i5 6200U с технологией Intel Speed Shift по сравнению с технологией Intel SpeedStep.

  • Скорость реагирования выросла на 45 %.
  • Обработка фотографий на 45 % быстрее.
  • Построение графиков на 31 % быстрее.
  • Локальные заметки на 22 % быстрее.
  • Средняя скорость реагирования выросла на 20 %.

Согласно результатам теста WebXPRT* 2015 компании Principled Technologies*, в котором измеряется производительность веб-приложений в целом и в отдельных областях, таких как обработка фотографий, создание заметок, построение графиков. Дополнительные сведения см. на сайте.

Дополнительная оптимизация электропитания достигается за счет динамической настройки ресурсов на основе их потребления: путем снижения мощности неиспользуемых ресурсов с помощью ограничения мощности векторных расширений Intel AVX2, когда они не используются, а также с помощью снижения потребляемой мощности при бездействии.

▍Мультимедиа и графика


Видеоадаптер Intel HD Graphics воплощает целый ряд усовершенствований с точки зрения обработки трехмерной графики, обработки мультимедиа, вывода изображения на экран, производительности, электропитания, возможности настройки и масштабирования. Это весьма мощное устройство в семействе встроенных в процессор графических адаптеров (впервые появившихся в процессорах Intel Core второго поколения). На рис. 6 сравниваются некоторые из этих усовершенствований, обеспечивающих повышение производительности графики более чем в 100 раз[2].


Рисунок 6. Возможности графической подсистемы в разных поколениях процессоров


Рисунок 7. Улучшение обработки графики и мультимедиа в разных поколениях

Микроархитектура 9-го поколения
Графическая архитектура 9-го поколения аналогична микроархитектуре графики 8-го поколения процессоров Intel Core Broadwell (5-го поколения), но улучшена с точки зрения производительности и масштабируемости. На рис. 8 показана блок-схема микроархитектуры поколения 9[8], состоящей из трех основных компонентов.

  • Экран. С левой стороны.
  • Вне среза. L-образная часть в середине. Включает поточный обработчик команд, глобальный диспетчер потоков и графический интерфейс (GTI).
  • Срез. Включает исполняющие блоки (ИБ).

По сравнению с 8-м поколением микроархитектура 9-го поколения отличается более высокой максимальной производительностью на 1 Вт, повышенной пропускной способностью и отдельным контуром электропитания/тактов для компонента вне среза. Это позволяет более эффективно управлять электропитанием в таких режимах использования, как при воспроизведении мультимедиа. Срез является настраиваемым компонентом. Например, GT3 поддерживает до двух срезов (каждый срез с 24 исполняющими блоками), GT4 (Halo) может поддерживать до 3 срезов (цифра после букв GT означает количество исполняющих блоков на основе их использования: GT1 поддерживает 12 исполняющих блоков, GT2 — 24, GT3 — 48, а GT4 — 72 исполняющих блока). Архитектура допускает настройку в достаточно широких пределах, чтобы использовать минимальное количество исполняющих блоков в сценариях с низкой нагрузкой, поэтому потребление электроэнергии может составлять от 4 до более чем 65 Вт. Поддержка API графических процессоров 9-го поколения доступна в DirectX* 12, OpenCL 2.x, OpenGL* 5.x и Vulkan*.


Рисунок 8. Архитектура графических процессоров 9-го поколения

Подробнее об этих компонентах см. по адресу.
В число усовершенствований и возможностей обработки мультимедиа входят следующие[2]:

  • Потребление менее 1 Вт, потребление 1 Вт при проведении видеоконференций.
  • Ускорение воспроизведения необработанного видео с камеры (в формате RAW) с помощью новых функций VQE для поддержки воспроизведения видео RAW с разрешением до 4K60 на мобильных платформах.
  • Новый режим New Intel Quick Sync Video с фиксированными функциями (FF).
  • Поддержка широкого набора кодеков с фиксированными функциями, ускорение декодирования с помощью ГП.

На рис. 9 показаны кодеки графического процессора поколения 9.

Примечание. Поддержка кодеков мультимедиа и обработки может быть доступна не во всех ОС и приложениях.


Рисунок 9. Поддержка кодеков процессорами Skylake

В число усовершенствований и возможностей работы экрана входят следующие:

  • Смешение, масштабирование, поворот и сжатие изображения.
  • Поддержка высокой плотности пикселей (разрешение свыше 4K).
  • Поддержка передачи изображения по беспроводному подключению с разрешением вплоть до 4K30.
  • Самостоятельное обновление (PSR2).
  • CUI X.X — новые возможности, повышенная производительность.

В процессорах Intel Core I7-6700K предусмотрены следующие возможности для геймеров (см. рис. 10). Также поддерживается технология Intel Turbo Boost 2.0, технология гиперпоточности Intel и возможность разгона. Прирост производительности по сравнению с ПК пятилетней давности достигает 80 %. Дополнительные сведения см. на этой странице.


Рисунок 10. Возможности процессоров Intel Core i7-6700K

  1. Источник: корпорация Intel. На основе результатов процессоров Intel Core i7-6700K и Intel Core i7-875K в тесте SPECint*_rate_base2006 (коэффициент копирования 8).
  2. Источник: корпорация Intel. На основе результатов процессоров Intel Core i7-6700K и Intel Core i7-3770K в тесте SPECint*_rate_base2006 (коэффициент копирования 8).
  3. Описываемые возможности доступны в отдельных сочетаниях процессоров и наборов микросхем. Предупреждение. Изменение тактовой частоты и/или напряжения может: (i) привести к снижению стабильности системы и снижению срока эксплуатации системы и процессора; (ii) привести к отказу процессора и других компонентов системы; (iii) привести к снижению производительности системы; (iv) привести к дополнительному нагреву или к другим повреждениям; (v) повлиять на целостность данных в системе. Корпорация Intel не тестирует и не гарантирует работу процессоров с техническими параметрами, отличными от установленных.

▍Масштабируемость


Микроархитектура Skylake — это настраиваемое ядро: единая конструкция для двух направлений, одно — для клиентских устройств, другое — для серверов без ущерба для требований по мощности и производительности обоих сегментов. На рис. 11 показаны различные модели процессоров и их эффективность с точки зрения мощности для использования в устройствах разного размера и разных типов — от сверхкомпактных Compute Stick до мощных рабочих станций на основе Intel Xeon.


Рисунок 11. Доступность процессоров Intel Core для различных типов устройств

▍Расширенные возможности безопасности


Расширения Intel Software Guard Extensions (Intel SGX): Intel SGX — это набор новых инструкций в процессорах Skylake, дающий возможность разработчикам приложений защищать важные данные от несанкционированных изменений и доступа посторонних программ, работающих с более высоким уровнем прав. Это дает приложениям возможность сохранять конфиденциальность и целостность конфиденциальной информации [1], [3]. Skylake поддерживает инструкции и потоки для создания безопасных анклавов, позволяя использовать доверенные области памяти. Дополнительные сведения о расширениях Intel SGX см. на этой странице.

Расширения защиты памяти Intel (Intel MPX): Intel MPX — новый набор инструкций для проверки переполнения буфера во время выполнения. Эти инструкции позволяют проверять границы буферов стека и буферов кучи перед доступом к памяти, чтобы процесс, обращающийся к памяти, имел доступ лишь к той области памяти, которая ему назначена. Поддержка Intel MPX реализована в Windows* 10 с помощью встроенных функций Intel MPX в Microsoft Visual Studio* 2015. В большинстве приложений C/C++ можно будет использовать Intel MPX: для этого достаточно заново скомпилировать приложения, не изменяя исходный код и связи с устаревшими библиотеками. При запуске библиотек, поддерживающих Intel MPX, в системах, не поддерживающих Intel MPX (процессоры Intel Core 5-го поколения и более ранних), производительность никак не изменяется: ни повышается, ни снижается. Также можно динамически включать и отключать поддержку Intel MPX [1], [3].
Мы рассмотрели усовершенствования и улучшения архитектуры Skylake. В следующем разделе мы рассмотрим компоненты Windows 10, оптимизированные для использования преимуществ архитектуры Intel Core.

Новые возможности Windows 10


Возможности процессоров Intel Core 6-го поколения дополняются возможностями операционной системы Windows 10. Ниже перечислены некоторые основные возможности оборудования Intel и ОС Windows 10, благодаря которым платформы Intel под управлением Windows 10 работают эффективнее, стабильнее и быстрее[3].



Ϯ Ведется совместная работа Intel и Майкрософт для реализации дальнейшей поддержки в Windows
Рисунок 12. Возможности Skylake и Windows* 10

▍Кортана


Голосовой помощник Кортана корпорации Майкрософт доступен в Windows* 10 и дает возможность управлять компьютером с помощью голоса после произнесения ключевой фразы «Привет, Кортана!». Функция пробуждения по голосовой команде использует конвейер обработки звука на ЦП для повышения достоверности распознавания, но можно передать эту функцию на аппаратный цифровой сигнальный процессор звука со встроенной поддержкой Windows 10[3].

▍Windows Hello*


С помощью биометрического оборудования и Microsoft Passport* служба Windows Hello поддерживает различные механизмы входа в систему с помощью распознавания лица, отпечатков пальцев или радужки глаз. Система без установки каких-либо добавочных компонентов поддерживает все эти возможности входа без использования пароля. Камера переднего обзора Intel RealSense (F200/SR300) поддерживает биометрическую проверку подлинности на основе распознавания лица[3].


Рисунок 13. Windows* Hello с технологией Intel RealSense

Фотографии на рис. 13 показывают, как реперные точки, обнаруженные на лице камерой F200, используются для идентификации пользователя и входа в систему. На основе расположения 78 реперных точек на лице создается шаблон лица при первой попытке пользователя войти в систему с помощью распознавания лица. При следующей попытке входа сохраненное расположение реперных точек, полученное камерой, сравнивается с сохраненным шаблоном. Возможности службы Microsoft Passport в сочетании с возможностями камеры позволяют добиться уровня безопасности с показателями ложного допуска в систему в 1 из 100 000 случаев и ложного отказа в допуске в 2–4 % случаев.

Ссылки


  1. Новое поколение микроархитектуры Intel под названием Skylake, автор Julius Mandelblat
  2. Новое поколение графической микроархитектуры Intel под названием Skylake, автор David Blythe
  3. Архитектура Intel Skylake и Windows* 10 — лучше вместе, автор Shiv Koushik
  4. Skylake для геймеров
  5. Лучший процессор Intel
  6. Тест производительности Skylake Desktop
  7. Тест производительности Skylake Laptop
  8. Вычислительная архитектура процессоров Intel Gen9

habr.com

Обзор процессора Intel® Core™ 6-го поколения (Skylake)

Введение

Процессоры Intel® Core™ 6-го поколения (Skylake) появились в 2015 году. Благодаря целому ряду усовершенствований на уровне ядра, «системы на кристалле» и на уровне платформы, по сравнению с 14-нм процессором предыдущего поколения (Broadwell), процессор Skylake пользуется огромной популярностью в устройствах самых разных типов, предназначенных для работы, творчества и игр. В этой статье приводится обзор основных возможностей и усовершенствований Skylake, а также новые модели использования, такие как пробуждение по голосовым командам и вход в систему по биометрическим данным в ОС Windows* 10.

Архитектура Skylake

Процессоры Intel Core 6-го поколения производятся по 14-нм технологии с учетом более компактного размера процессора и всей платформы для использования в устройствах разных типов. При этом также повышена производительность архитектуры и графики, реализованы расширенные средства безопасности. На рис. 1 показаны эти новые и улучшенные возможности. Фактическая конфигурация в устройствах ОЕМ-производителей может различаться.

Рисунок 1.Архитектура Skylake и сводка усовершенствований [1].

Основные направления развития процессоров

Производительность

Повышение производительности напрямую обусловлено предоставлением большего количества инструкций исполняющему блоку: за каждый тактовый цикл выполняется больше инструкций. Такой результат достигается за счет улучшений в четырех категориях [Ibid].

  • Улучшенный внешний интерфейс. Благодаря более точному предсказанию ветвления и повышенной вместимости увеличивается скорость декодирования инструкций, упреждающая выборка работает быстрее и эффективнее.
  • Улучшенное распараллеливание инструкций. За каждый такт обрабатывается больше инструкций, при этом параллельное выполнение инструкции улучшено благодаря более эффективной буферизации.
  • Улучшенные исполняющие блоки (ИБ). Работа исполняющих блоков улучшена по сравнению с прежними поколениями за счет следующих мер:
    • Укорочены задержки.
    • Увеличено количество ИБ.
    • Повышена эффективность электропитания за счет отключения неиспользуемых блоков.
    • Повышена скорость выполнения алгоритмов безопасности.
  • Улучшенная подсистема памяти. В дополнение к улучшению внешнего интерфейса, параллельной обработке инструкций и исполняющих блоков усовершенствована и подсистема памяти в соответствии с пропускной способностью и требованиями производительности перечисленных выше компонентов. Для этого использованы следующие меры:
    • Повышенная пропускная способность загрузки и сохранения.
    • Улучшенный модуль упреждающей выборки.
    • Хранение на более глубоком уровне.
    • Буферы заполнения и обратной записи.
    • Улучшенная обработка промахов страниц.
    • Повышенная пропускная способность при промахах кэша второго уровня.
    • Новые инструкции управления кэшем.

Рисунок 2.Схема микроархитектуры ядра Skylake

На рис. 3 показано улучшение параллельной обработки в процессорах Skylake по сравнению с процессорами прежних поколений (Sandy Bridge — второе, а Haswell — четвертое поколение процессоров Intel® Core™).

Рисунок 3.Улучшенное распараллеливание по сравнению с прежними поколениями процессоров

Благодаря усовершенствованиям, показанным на рис. 3, производительность процессора возросла на 60 % по сравнению с ПК пятилетней давности, при этом перекодирование видео осуществляется в 6 раз быстрее, а производительность графической подсистемы выросла в 11 раз.

Рисунок 4.Производительность процессора Intel® Core™ 6-го поколения по сравнению с ПК пятилетней давности

  1. Источник: корпорация Intel. На основе результатов процессоров Intel® Core™ i5-6500 и Intel® Core™ i5-650 в тесте SYSmark* 2014.
  2. Источник: корпорация Intel. На основе результатов процессоров Intel® Core™ i5-6500 и Intel® Core™ i5-650 в тесте Handbrake с QSV.
  3. Источник: корпорация Intel. На основе результатов процессоров Intel® Core™ i5-6500 и Intel® Core™ i5-650 в тесте 3DMark* Cloud Gate.

Подробные результаты сравнения производительности настольных ПК и ноутбуков см. по следующим ссылкам:

Производительность настольных компьютеров: http://www.intel.com/content/www/us/en/benchmarks/desktop/6th-gen-core-i5-6500.html

Производительность ноутбуков: http://www.intel.com/content/www/us/en/benchmarks/laptop/6th-gen-core-i5-6200u.html

Экономия электроэнергии

Настройка ресурсов на основе динамического потребления

В устаревших системах используется технология Intel® SpeedStep® для балансировки производительности и расхода электроэнергии с помощью алгоритма подключения ресурсов по запросу. Этот алгоритм управляется операционной системой. Такой подход неплох для постоянной нагрузки, но неоптимален при резком повышении нагрузки. В процессорах Skylake технология Intel® Speed Shift передает управление оборудованию вместо операционной системы и дает возможность процессору перейти на максимальную тактовую частоту примерно за 1 мс, обеспечивая более точное управление электропитанием[3].

Рисунок 5.Сравнение технологий Intel® Speed Shift и Intel® SpeedStep®

На приведенном ниже графике показана скорость реагирования процессора Intel® Core™ i5 6200U с технологией Intel Speed Shift по сравнению с технологией Intel SpeedStep.

  • Скорость реагирования выросла на 45 %.
  • Обработка фотографий на 45 % быстрее.
  • Построение графиков на 31 % быстрее.
  • Локальные заметки на 22 % быстрее.
  • Средняя скорость реагирования выросла на 20 %.

Дополнительная оптимизация электропитания достигается за счет динамической настройки ресурсов на основе их потребления: путем снижения мощности неиспользуемых ресурсов с помощью ограничения мощности векторных расширений Intel® AVX2, когда они не используются, а также с помощью снижения потребляемой мощности при бездействии.

Мультимедиа и графика

Видеоадаптер Intel® HD Graphics воплощает целый ряд усовершенствований с точки зрения обработки трехмерной графики, обработки мультимедиа, вывода изображения на экран, производительности, электропитания, возможности настройки и масштабирования. Это весьма мощное устройство в семействе встроенных в процессор графических адаптеров (впервые появившихся в процессорах Intel® Core™ второго поколения). На рис. 6 сравниваются некоторые из этих усовершенствований, обеспечивающих повышение производительности графики более чем в 100 раз[2].

[Пиковое значение FLOPS шейдера при частоте 1 ГГц]

Рисунок 6.Возможности графической подсистемы в разных поколениях процессоров

Рисунок 7.Улучшение обработки графики и мультимедиа в разных поколениях

Микроархитектура 9-го поколения

Графическая архитектура 9-го поколения аналогична микроархитектуре графики 8-го поколения процессоров Intel® Core™ Broadwell (5-го поколения), но улучшена с точки зрения производительности и масштабируемости. На рис. 8 показана блок-схема микроархитектуры поколения 9[8], состоящей из трех основных компонентов.

  • Экран. С левой стороны.
  • Вне среза. L-образная часть в середине. Включает поточный обработчик команд, глобальный диспетчер потоков и графический интерфейс (GTI).
  • Срез. Включает исполняющие блоки (ИБ).

По сравнению с 8-м поколением микроархитектура 9-го поколения отличается более высокой максимальной производительностью на 1 Вт, повышенной пропускной способностью и отдельным контуром электропитания/тактов для компонента вне среза. Это позволяет более эффективно управлять электропитанием в таких режимах использования, как при воспроизведении мультимедиа. Срез является настраиваемым компонентом. Например, GT3 поддерживает до двух срезов (каждый срез с 24 исполняющими блоками), GT4 (Halo) может поддерживать до 3 срезов (цифра после букв GT означает количество исполняющих блоков на основе их использования: GT1 поддерживает 12 исполняющих блоков, GT2 — 24, GT3 — 48, а GT4 — 72 исполняющих блока). Архитектура допускает настройку в достаточно широких пределах, чтобы использовать минимальное количество исполняющих блоков в сценариях с низкой нагрузкой, поэтому потребление электроэнергии может составлять от 4 до более чем 65 Вт. Поддержка API графических процессоров 9-го поколения доступна в DirectX* 12, OpenCL™ 2.x, OpenGL* 5.x и Vulkan*.

Рисунок 8.Архитектура графических процессоров 9-го поколения

Подробнее об этих компонентах см. по адресу (ссылка IDF https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf)

В число усовершенствований и возможностей обработки мультимедиа входят следующие[2]:

  • Потребление менее 1 Вт, потребление 1 Вт при проведении видеоконференций.
  • Ускорение воспроизведения необработанного видео с камеры (в формате RAW) с помощью новых функций VQE для поддержки воспроизведения видео RAW с разрешением до 4K60 на мобильных платформах.
  • Новый режим New Intel® Quick Sync Video с фиксированными функциями (FF).
  • Поддержка широкого набора кодеков с фиксированными функциями, ускорение декодирования с помощью ГП.

На рис. 9 показаны кодеки графического процессора поколения 9.

Примечание. Поддержка кодеков мультимедиа и обработки может быть доступна не во всех ОС и приложениях.

Рисунок 9.Поддержка кодеков процессорами Skylake

В число усовершенствований и возможностей работы экрана входят следующие:

  • Смешение, масштабирование, поворот и сжатие изображения.
  • Поддержка высокой плотности пикселей (разрешение свыше 4K).
  • Поддержка передачи изображения по беспроводному подключению с разрешением вплоть до 4K30.
  • Самостоятельное обновление (PSR2).
  • CUI X.X — новые возможности, повышенная производительность.

В процессорах Intel® Core™ I7-6700K предусмотрены следующие возможности для геймеров (см. рис. 10). Также поддерживается технология Intel® Turbo Boost 2.0, технология гиперпоточности Intel® и возможность разгона. Прирост производительности по сравнению с ПК пятилетней давности достигает 80 %. Дополнительные сведения см. на этой странице: http://www.intel.com/content/www/us/en/processors/core/core-i7ee-processor.html

  1. Источник: корпорация Intel. На основе результатов процессоров Intel® Core™ i7-6700K и Intel® Core™ i7-875K в тесте SPECint*_rate_base2006 (коэффициент копирования 8).
  2. Источник: корпорация Intel. На основе результатов процессоров Intel® Core™ i7-6700K и Intel® Core™ i7-3770K в тесте SPECint*_rate_base2006 (коэффициент копирования 8).
  3. Описываемые возможности доступны в отдельных сочетаниях процессоров и наборов микросхем. Предупреждение. Изменение тактовой частоты и/или напряжения может: (i) привести к снижению стабильности системы и снижению срока эксплуатации системы и процессора; (ii) привести к отказу процессора и других компонентов системы; (iii) привести к снижению производительности системы; (iv) привести к дополнительному нагреву или к другим повреждениям; (v) повлиять на целостность данных в системе. Корпорация Intel не тестирует и не гарантирует работу процессоров с техническими параметрами, отличными от установленных.

Рисунок 10.Возможности процессоров Intel® Core™ i7-6700K

Масштабируемость

Микроархитектура Skylake — это настраиваемое ядро: единая конструкция для двух направлений, одно — для клиентских устройств, другое — для серверов без ущерба для требований по мощности и производительности обоих сегментов. На рис. 11 показаны различные модели процессоров и их эффективность с точки зрения мощности для использования в устройствах разного размера и разных типов — от сверхкомпактных Compute Stick до мощных рабочих станций на основе Intel® Xeon®.

Рисунок 11.Доступность процессоров Intel® Core™ для различных типов устройств

Расширенные возможности безопасности

Расширения Intel® Software Guard Extensions (Intel® SGX): Intel SGX — это набор новых инструкций в процессорах Skylake, дающий возможность разработчикам приложений защищать важные данные от несанкционированных изменений и доступа посторонних программ, работающих с более высоким уровнем прав. Это дает приложениям возможность сохранять конфиденциальность и целостность конфиденциальной информации [1], [3]. Skylake поддерживает инструкции и потоки для создания безопасных анклавов, позволяя использовать доверенные области памяти. Дополнительные сведения о расширениях Intel SGX см. на этой странице: https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx

Расширения защиты памяти Intel® (Intel® MPX): Intel MPX — новый набор инструкций для проверки переполнения буфера во время выполнения. Эти инструкции позволяют проверять границы буферов стека и буферов кучи перед доступом к памяти, чтобы процесс, обращающийся к памяти, имел доступ лишь к той области памяти, которая ему назначена. Поддержка Intel MPX реализована в Windows* 10 с помощью встроенных функций Intel MPX в Microsoft Visual Studio* 2015. В большинстве приложений C/C++ можно будет использовать Intel MPX: для этого достаточно заново скомпилировать приложения, не изменяя исходный код и связи с устаревшими библиотеками. При запуске библиотек, поддерживающих Intel MPX, в системах, не поддерживающих Intel MPX (процессоры Intel® Core™ 5-го поколения и более ранних), производительность никак не изменяется: ни повышается, ни снижается. Также можно динамически включать и отключать поддержку Intel MPX [1], [3].

Мы рассмотрели усовершенствования и улучшения архитектуры Skylake. В следующем разделе мы рассмотрим компоненты Windows 10, оптимизированные для использования преимуществ архитектуры Intel® Core™.

Новые возможности Windows 10

Возможности процессоров Intel Core 6-го поколения дополняются возможностями операционной системы Windows 10. Ниже перечислены некоторые основные возможности оборудования Intel и ОС Windows 10, благодаря которым платформы Intel® под управлением Windows 10 работают эффективнее, стабильнее и быстрее[3].

Ϯ Ведется совместная работа Intel и Майкрософт для реализации дальнейшей поддержки в Windows.

Рисунок 12.Возможности Skylake и Windows* 10

Кортана

Голосовой помощник Кортана корпорации Майкрософт доступен в Windows* 10 и дает возможность управлять компьютером с помощью голоса после произнесения ключевой фразы «Привет, Кортана!». Функция пробуждения по голосовой команде использует конвейер обработки звука на ЦП для повышения достоверности распознавания, но можно передать эту функцию на аппаратный цифровой сигнальный процессор звука со встроенной поддержкой Windows 10[3].

Windows Hello*

С помощью биометрического оборудования и Microsoft Passport* служба Windows Hello поддерживает различные механизмы входа в систему с помощью распознавания лица, отпечатков пальцев или радужки глаз. Система без установки каких-либо добавочных компонентов поддерживает все эти возможности входа без использования пароля. Камера переднего обзора Intel® RealSense™ (F200/SR300) поддерживает биометрическую проверку подлинности на основе распознавания лица[3].

Рисунок 13.Windows* Hello с технологией Intel® RealSense™

Фотографии на рис. 13 показывают, как реперные точки, обнаруженные на лице камерой F200, используются для идентификации пользователя и входа в систему. На основе расположения 78 реперных точек на лице создается шаблон лица при первой попытке пользователя войти в систему с помощью распознавания лица. При следующей попытке входа сохраненное расположение реперных точек, полученное камерой, сравнивается с сохраненным шаблоном. Возможности службы Microsoft Passport в сочетании с возможностями камеры позволяют добиться уровня безопасности с показателями ложного допуска в систему в 1 из 100 000 случаев и ложного отказа в допуске в 2–4 % случаев.

Ссылки

  1. Intel’s next generation microarchitecture code-named Skylake by Julius Mandelblat: http://intelstudios.edgesuite.net/idf/2015/sf/ti/150818_spcs001/index.html
  2. Next-generation Intel® processor graphics architecture, code-named Skylake, by David Blythe: http://intelstudios.edgesuite.net/idf/2015/sf/ti/150818_spcs003/index.html
  3. Intel® architecture code-named Skylake and Windows* 10 better together, by Shiv Koushik: http://intelstudios.edgesuite.net/idf/2015/sf/ti/150819_spcs009/index.html
  4. Skylake for gamers: http://www.intel.com/content/www/us/en/processors/core/core-i7ee-processor.html
  5. Intel’s best processor ever: http://www.intel.com/content/www/us/en/processors/core/core-processor-family.html
  6. Skylake Desktop Performance Benchmark: http://www.intel.com/content/www/us/en/benchmarks/desktop/6th-gen-core-i5-6500.html
  7. Skylake Laptop Performance Benchmark: http://www.intel.com/content/www/us/en/benchmarks/laptop/6th-gen-core-i5-6200u.html
  8. The compute architecture of Intel® processor graphics Gen9: https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

software.intel.com

подробности о микроархитектуре / Процессоры и память

Анонс процессоров поколения Skylake протекает на этот раз в несколько своеобразном режиме. В первую очередь Intel представила Core i7-6700K и i5-6600K – старшие десктопные модели для энтузиастов – и даже начала их продавать, но выход массовых процессоров для настольных компьютеров, как и для других рыночных сегментов, оказался отодвинут на несколько более поздний срок. Следуя этому графику, в момент анонса оверклокерских флагманов компания не сочла нужным рассказать об особенностях новой микроархитектуры, поэтому, хотя мы и оценили быстродействие Skylake, разобраться в том, почему оно оказалось именно таким, в полной мере не получилось.

Однако в рамках прошедшей в Сан-Франциско сессии IDF 2015 компания Intel решила заполнить информационный вакуум и поведала о некоторых деталях внутреннего устройства новинок. К сожалению, рассказ оказался не столь полным, как того хотелось бы, – всю информацию разработчики обещают выложить на стол лишь в момент представления серверных процессоров Xeon. Но обнародованных сведений вполне хватит, чтобы получить общее представление о том, в чём Skylake отличается от Haswell и Broadwell с точки зрения микроархитектуры. И в этой статье мы попробуем воспроизвести основные факты, то есть фактически подведём под выполненное нами ранее тестирование представителей семейства Skylake-S недостающую теоретическую базу.

Четырёхъядерный Skylake-S с графикой GT2

Издавна повелось, что основным приоритетом разработчиков при проектировании новых микроархитектур оказывается стремление понизить энергопотребление и улучшить удельную производительность на каждый затраченный ватт. И на первый взгляд со Skylake в этом плане поменялось немногое – разрабатывавшая эту микроархитектуру в течение последних пяти лет израильская команда инженеров исходила из этих же вводных. Однако есть важный нюанс: при проектировании данного поколения процессоров разработчики старались не просто добиться снижения потребления, а пытались учесть, что такие процессоры должны найти применение в конечных продуктах с сильно различающимися тепловыми пакетами, начиная c 4,5 Вт и заканчивая 95 Вт. Применённый подход сразу учитывал то, что новая микроархитектура должна хорошо вписываться как в высокоэкономичные, так и высокопроизводительные дизайны. Иными словами, начиная со Skylake компания Intel решила постепенно дистанцироваться от прошлой стратегии, когда при разработке новых микроархитектур во главу угла ставится экономичность, и на базе полученного энергоэффективного дизайна изготавливаются не только мобильные процессоры, но и решения для десктопов и серверов.

Однако вариативность в потреблении и тепловых пакетах процессоров – далеко не единственная цель, стоявшая перед инженерами. Растущий рыночный сегмент ультрапортативных устройств диктует и другие условия, которые должны учитываться в процессорном дизайне. Например, большое значение приобретают размеры чипов и сопутствующих схем. Вполне логично, что экономичные 4,5-ваттные процессоры вместе с набором системной логики и материнской платой, которые предназначаются для планшетных компьютеров, должны занимать как можно меньшее пространство и быть как можно легче. Поэтому ещё одним ориентиром при разработке выступали и массогабаритные характеристики, которым, как и энергопотреблению, нужно было позволить варьироваться в широких пределах – для того чтобы микроархитектура Skylake без проблем вписывалась как в ультрапортативные, так и в настольные компьютеры.

И поставленные задачи были решены. Мобильные варианты Skylake, как и версии в исполнении система-на-чипе, удалось сделать заметно меньшими по размеру по сравнению с Haswell и Broadwell. А оптимизации в части энергопотребления позволили заметно увеличить производительность энергоэффективных чипов при сохранении старых рамок тепловых пакетов. Впрочем, всё это само по себе – вполне обычное проявление технического прогресса. Поражает же другое – масштаб изменений. Потребление процессоров Skylake разных классов теперь может расходиться в 20 раз, а их физические размеры способны варьироваться в четырёхкратных пределах. Также инженеры Intel ставят себе в заслугу и заметное повышение экономичности систем-на-чипе нового поколения, достигающее 40-60 процентов на типовых мультимедийных задачах и в состоянии бездействия.

Вообще, несмотря на то, что Intel говорит о Skylake как об универсальной микроархитектуре, по сложившейся традиции основным бенефициаром её ввода в строй выступают чипы для ультрапортативных устройств. Например, от современных систем-на-чипе требуется поддержка специфичных шин и интерфейсов: смартфоны и планшеты для хранения данных активно используют устройства eMMC и SDXC, интерфейс CSI для подключения камеры и тому подобное. И многие из таких интерфейсов теперь встроены непосредственно в чипсеты для Skylake, которые могут сожительствовать с процессором в одном полупроводниковом кристалле. Но самое интересное, что подобные изменения затронули и базовую часть процессора. Так, непосредственно в микроархитектуре Skylake прописался новый блок с фиксированными функциями – сигнальный процессор для обработки изображений.

Он поддерживает до четырёх камер с разрешением 13 Мп, причём две из них могут быть активными одновременно, и обеспечивает аппаратную обработку сигнала, включающую как простой захват видео (с разрешением 1080p60 или 2Kp30), так и продвинутые функции вроде распознавания лиц, формирования панорам, построения HDR-изображений и так далее.

⇡#Базовая микроархитектура

Впрочем, не стоит думать, что, создавая такой универсальный процессор, Intel забыла про совершенствование базовой микроархитектуры. Всё-таки Skylake относится к фазе разработки «так», поэтому достаточно серьёзные изменения затронули и непосредственно вычислительные ядра. Правда, действующий со времён Haswell принцип проектирования, который даёт ход лишь таким решениям, которые улучшают производительность как минимум вдвое сильнее, чем поднимают энергопотребление, остался в силе. И это хорошо объясняет, почему базовая архитектура теперь меняется гораздо более медленными темпами, чем раньше. Применительно же к Skylake всё это выливается в то, что по сравнению с процессорами прошлых поколений мы видим лишь небольшое число усовершенствований, которые на обычном скалярном x86-коде лишь незначительно увеличивают показатель IPC (число исполняемых за такт инструкций).

Фактически большинство сделанных изменений направлено на расширение входной части исполнительного конвейера, что позволяет улучшить возможности по параллельной обработке команд. Основные принципы работы Skylake по сравнению с предшествующими процессорами не изменились. И новая микроархитектура нацелена на одновременное декодирование до шести x86 CISC-инструкций, которые могут преобразовываться в шесть RISC-микроинструкций. Но, в отличие от его предшественников, число ситуаций, в которых Skylake сможет похвастать одновременным исполнением сразу шести полученных микроинструкций, то есть максимально эффективной загрузкой своего исполнительного конвейера, увеличится.

Для этого вновь улучшены блоки предсказания ветвлений, а также увеличены возможности по внеочередному исполнению инструкций. Впрочем, ни о какой структурной переделке речь не идёт. Все усовершенствования выполнены за счёт простого углубления внутренних буферов. Например, размер окна внеочередного исполнения вырос с 192 инструкций в Haswell до 224 в Skylake. Аналогично подросли и другие буфера, за счёт чего Skylake может работать одномоментно над большим количеством кода. Так, были увеличены буфера для работы с данными, ускорена обработка промахов страниц и промаха кеша L2, а технология Hyper-Threading стала более эффективной за счёт роста объёма станции резервирования (Reservation Stations).

Интересные изменения затронули блок предварительной выборки, агрессивность которого на этот раз была даже уменьшена. Как показал опыт, предварительная выборка избыточного числа инструкций может вредить энергоэффективности. Поэтому инженеры сделали выбор в пользу экономии энергии, которую можно потратить на других этапах исполнительного конвейера или просто повысить тактовую частоту.

К сожалению, Intel не стала углубляться в подробности относительно изменений в самом сердце микроархитектуры – в исполнительных устройствах. Мы даже не получили никакого намёка на то, не изменилось ли по сравнению с Haswell число исполнительных портов. Однако специалисты компании утверждают, что итогом сделанных глубинных переделок стало увеличение темпа исполнения целого ряда FPU-инструкций. Кроме того, Intel обнародовала информацию об ускорении в Skylake выполнения криптографических команд семейства AES. Прирост производительности типовых алгоритмов шифрования должен составить до 33 процентов в CBC-режиме и до 17 процентов в GCM-режиме.

Надо сказать, что в рассказе Intel о Skylake прозвучали достаточно любопытные откровения о том, что построенные на ней серверные и клиентские процессоры могут серьёзно различаться по своей конфигурации даже на уровне микроархитектуры. Один пример такого отличия уже хорошо известен – серверные Skylake получат поддержку команд AVX-512, которая в остальных процессорах реализована не будет. Однако аналогичным образом дело может обстоять и с какими-то другими расширениями. Иными словами, когда на рынке появятся серверные модификации Skylake, эта микроархитектура может открыть какие-то новые свои стороны.

Но нововведения в системе команд не миновали и клиентские процессоры. Так, в них появились новые инструкции семейства Intel SGX (Software Guard Extension). Входящие в этот набор команды позволяют приложению создать для своего исполнения изолированную и защищённую среду в памяти, доступ к которой будет невозможен ни для каких иных процессов и устройств. Таким образом приложение, оперирующее критически важной информацией, сможет защитить свой код и данные от каких-либо программных и аппаратных атак и вторжений, что может поднять безопасность платформы x86 на новый уровень. Intel отдельно подчёркивает, что благодаря SGX можно создавать и полностью защищённый программный код, который невозможно отслеживать с помощью аппаратных отладчиков ITP-класса.

Существенные изменения сосредоточены в микроархитектуре Skylake и на более высоком уровне – во взаимодействии процессорных блоков между собой и работе с данными. В первую очередь упомянуть следует изменение алгоритма работы L2-кеша. Ассоциативность по сравнению с Haswell и Broadwell уменьшилась вдвое, это увеличило его скорость, а обработка промахов теперь вызывает меньшие задержки.

Но более существенные нововведения стоит искать ещё дальше от процессорных ядер. Skylake получил более быструю кольцевую шину, которая связывает между собой все процессорные ядра, L3-кеш, контроллер памяти, графическое ядро и системный агент. По словам разработчиков, максимальная полоса пропускания кольцевой шины удвоена. Однако при этом она способна работать и в старом, менее скоростном режиме, в зависимости от того, какой сценарий использования процессорного дизайна предполагается в каждом конкретном случае. Более медленная шина позволяет снизить энергопотребление и тепловыделение, но в десктопных вариантах Skylake используется скоростной режим. Соответственно, в тех модификациях Skylake, где упор сделан на производительность, а не на энергоэффективность, за счёт увеличения пропускной способности кольцевой шины стала быстрее работать и кеш-память третьего уровня.

Преобразования в системе кеширования затронули и eDRAM-буфер, который, начиная с Haswell, устанавливается в некоторых производительных модификациях процессоров. В Skylake компания Intel планирует расширить сферу применения eDRAM, и с прицелом на это сделан сразу целый комплекс оптимизаций. В процессорах Haswell и Broadwell построенный на eDRAM дополнительный буфер, размещённый в отдельном полупроводниковом кристалле Crystalwell по соседству с процессорным ядром, мог сожительствовать лишь с L3-кешем с объёмом 1,5 Мбайт на ядро. В это время eDRAM выступала 128-мегабайтным кешем четвёртого уровня, в котором хранятся данные, вытесненные из L3-кеша. В Skylake эта структура разрушена: теперь конфигурации процессора с eDRAM смогут располагать кешем третьего уровня с ёмкостью 2 Мбайт на ядро, а eDRAM-память утратила свою роль ещё одного уровня кеширования и может иметь различные варианты ёмкости: от 64 до 128 Мбайт.

 
 

В ознаменование произошедших изменений Intel даже придумала для eDRAM новое название – Memory Side Cache (кеш на стороне памяти). Основная идея состоит в том, что до сих пор eDRAM была напрямую связана с L3-кешем, получая из него данные, которые  не могутв нём больше храниться. В новых же процессорах eDRAM взаимодействует не с процессорным кешем, а с контроллером памяти. Это означает две вещи. Во-первых, теперь eDRAM логически отвязана от процессора и с него снята забота о поддержании её когерентности. Во-вторых, кешироваться в eDRAM теперь могут абсолютно любые данные, поступающие в системную память, в том числе и те, которые помечены операционной системой как некешируемые, и даже те, которыми обменивается с памятью не процессор, а, например, PCI Express-устройства или графическое ядро.

Такие усовершенствования выглядят очень интересно, однако, по всей видимости, вариантов Skylake с eDRAM, ориентированных на использование в традиционных настольных системах, не будет. Так что все преимущества новой схемы смогут ощутить на себе лишь пользователи мобильных систем и компьютеров новых форм-факторов.

⇡#Новые подходы к экономии энергии

Волей-неволей к разговору об энергоэффективности приходится возвращаться снова. Слишком уж повлияло на дизайн процессоров Skylake стремление к экономии электроэнергии. И здесь получили развитие как традиционные подходы, так и некоторые принципиально новые идеи.

В первую очередь следует напомнить о том, что теперь процессорный дизайн не включает в себя интегрированный преобразователь питания. Он был убран именно из соображений экономичности – в наиболее энергоэффективных CPU с тепловым пакетом порядка 4,5 Вт это решение оказалось слишком расточительным, поэтому теперь конвертер питания вновь поселился на материнских платах. К слову, в будущих микроархитектурах Intel собирается вернуть преобразователь обратно в процессор, но не во всех версиях дизайна, а только в тех, которые рассчитаны на достаточно либеральные тепловые пакеты.

Второе достаточно очевидное нововведение состоит в том, что инженеры Intel разбили процессор на большее, чем раньше, число энергетических доменов, способных независимо отключаться от линий питания в случае их бездействия. Теперь дело дошло даже до отдельных исполнительных устройств. Например, в Skylake могут независимо обесточиваться в случае простоя даже 256-битные исполнительные устройства, отвечающие за исполнение AVX2-команд.

Впрочем, всё это – отнюдь не новый подход, подобные техники в том или ином виде используются уже очень давно. Между тем в Skylake есть и действительно революционное нововведение – технология Speed Shift, суть которой заключается в том, что процессору теперь даётся куда большая свобода действий в управлении собственными энергосберегающими состояниями.

Обычно современные процессоры могут самостоятельно, то есть без участия операционной системы, переключать свою частоту между номинальным состоянием и турборежимом. Однако переход в экономичные состояния с пониженными напряжениями и частотами требует непосредственного участия ОС. Команды к снижению частот даёт именно она, предварительно обратившись к микропрограмме и выяснив, какие режимы со сниженным энергопотреблением может предложить конкретный экземпляр CPU. В результате переключение в любое экономичное состояние – это целый комплекс мероприятий, на который требуется немалое время. Ещё хуже дело обстоит с выходом из таких режимов. Процессор должен проинформировать операционную систему, о том, что что-то произошло, затем система должна обработать эту информацию и передать процессору команду на переключение частоты – такая цепочка действий занимает до 30 мс.

Внедрение же Speed Shift даёт процессору большую самостоятельность. Да, он сохраняет свою подчинённость операционной системе, которая может перевести его на более низкую частоту, например для экономии энергии в заканчивающейся батарее мобильного устройства. Но рутинные вопросы переключения энергосберегающих состояний процессор теперь берёт полностью на себя, что существенно улучшает время реакции и позволяет входить в энергосберегающие режимы и выходить из них за единицы миллисекунд. Уменьшение времени реакции на изменение условий должно, с одной стороны, послужить цели экономии энергии, а с другой — способно положительно сказаться и на производительности. Иными словами, процессоры Skylake с технологией Intel Speed Shift смогут самостоятельно подбирать наиболее подходящую частоту работы исходя из возложенной на них нагрузки, причём переключение состояний будет происходить более точно и более быстро.

Следует отметить, что в Speed Shift учитывается и ещё один аспект, который ранее обходился разработчиками стороной. Снижение частоты для уменьшения энергопотребления не всегда даёт ожидаемый эффект. Проблема заключается в том, что при уменьшении частоты ниже некоторого граничного значения потребление начинает падать в гораздо меньшей степени из-за приобретающих большее влияние токов утечки. Поэтому в некоторых энергосберегающих режимах эффективнее оказывается поднять частоту процессора, быстро выполнить необходимый код, а затем перевести процессор в режим сна. Именно такая стратегия и применяется в Skylake, где введены специальные алгоритмы, способные в глубоких энергосберегающих состояниях периодически отправлять процессор в состояние сна и затем пробуждать его для решения текущих низкоприоритетных задач.

Технология Speed Shift выглядит достаточно интересным и актуальным решением, однако, к сожалению, для её работы требуется поддержка со стороны операционной системы. На данный момент её может обеспечить лишь Windows 10. Все же остальные OC, в том числе и всевозможные вариации Linux или Android, поддержку Speed Shift пока не обеспечивают. Однако Intel обещает, что со временем эта проблема так или иначе будет решена.

В дополнение к сказанному нужно добавить, что Intel работает и над развитием процессорных блоков с фиксированными функциями, которые также позволяют экономить энергию. О графическом ядре Skylake мы ещё поговорим немного подробнее, но стоит напомнить, что кодирование и декодирование видео через возможности Quick Sync, а не процессорными ядрами, даёт хорошую возможность для энергосбережения. Кстати, в Skylake этот блок приобрёл новые функции, и теперь использование вычислительных ядер стало необязательным и при декодировании H.265/HEVC-контента. Предлагаемое же Intel открытое API для работы с Quick Sync позволяет разработчикам программного обеспечения активно задействовать эту технологию.

⇡#Графика растёт

Роль графических ядер, встроенных в процессоры, с каждым годом увеличивается. И это связано не столько с ростом их 3D-производительности, столько с тем, что встроенные GPU берут на себя всё новые функции, такие как параллельные вычисления или кодирование и декодирование мультимедийного контента. Исключением не стало и графическое ядро Skylake. Intel относит его к следующему, девятому поколению, и это значит, что в нём таится немало сюрпризов. Однако начать стоит с того, что GPU, реализованный в Skylake, как и его предшественники, сохранил традиционный модульный дизайн. Таким образом, мы вновь имеем дело с целым семейством решений разного класса: на базе имеющихся строительных блоков нового поколения Intel может собирать кардинально различающиеся по уровню производительности GPU. Подобная масштабируемость сама по себе новинкой не является, но в Skylake возросла не только максимальная производительность, но и число доступных вариантов графического ядра.

Итак, графическое ядро Skylake может быть построено на базе одного или нескольких модулей, каждый из которых обычно включает в себя по три секции. Секции объединяют по восемь исполнительных устройств, на которые ложится основная часть обработки графических данных, а также содержат базовые блоки для работы с памятью и текстурные семплеры. Помимо исполнительных устройств, сгруппированных в модули, графическое ядро содержит и внемодульную часть, отвечающую за фиксированные геометрические преобразования и отдельные мультимедийные функции.

На самом верхнем уровне иерархии графическое ядро Skylake очень похоже на ядро, реализованное в Broadwell. Однако если углубиться в подробности, то нетрудно найти и заметные изменения.

Во-первых, внемодульная часть вынесена теперь в отдельный энергетический домен, что позволяет задавать ей частоту и отправлять её в сон отдельно от исполнительных устройств. Это значит, что, например, при работе с технологией Quick Sync, которая реализуется как раз силами внемодульных блоков, основная часть GPU может быть отключена от линий питания в целях снижения энергопотребления. Кроме того, независимое управление частотой внемодульной части позволяет лучше подстраивать её производительность под конкретные нужды модулей графического ядра.

Во-вторых, в то время как графическое ядро Broadwell могло основываться лишь на одном или двух модулях, получая в своё распоряжение 24 или 48 исполнительных устройств (для энергоэффективных и бюджетных процессоров мог использоваться один модуль с отключенными секциями, что давало меньшее, чем 24, число исполнительных устройств), в Skylake может применяться от одного до трёх модулей.

Благодаря этому в дополнение к привычным конфигурациям GT1/GT2/GT3 в семействе процессоров Skylake будет доступно ещё более мощное ядро GT4, которое получит 72 исполнительных устройства.

Однако пиковая производительность самих исполнительных устройств в Skylake не изменилась – каждое такое устройство может выполнять до 16 32-битных операций за такт. При этом оно способно исполнять 7 вычислительных потоков одновременно и имеет 128 32-байтовых регистров общего назначения.

В-третьих, варианты ядра GT3 и GT4 могут быть дополнительно усилены eDRAM-буфером объёмом 64 или 128 Мбайт соответственно, что даёт модификации GT3e и GT4e. Процессоры Broadwell комплектовались лишь одним вариантом eDRAM – объёмом 128 Мбайт. В Skylake же этот дополнительный буфер не только изменил алгоритм работы, став «кешем на стороне памяти», но и приобрёл некоторую гибкость конфигурации. Однако его исполнение останется старым – он будет представлен отдельным 22-нм кристаллом, монтируемым на процессорную плату по соседству с основным чипом.

Появление в составе Skylake урезанного чипа eDRAM с ёмкостью 64 Мбайт должно расширить сферу применения графики GT3e. Процессоры Broadwell и Haswell, оснащённые дополнительным буфером, имели высокую стоимость и предназначались исключительно для производительных ноутбуков и настольных систем. Меньший кристалл eDRAM должен дать жизнь более доступным вариантам Skylake с мощным GPU, которые смогут найти применение, например, в ультрабуках.

Согласно имеющимся на текущий момент данным, графическое ядро Skyklake будет существовать в шести различных модификациях, которые получат числовые индексы из пятисотой серии:

  • HD Graphics 510 – GT1: один модуль, 12 исполнительных устройств;
  • HD Graphics 515 – GT1.5: один модуль, 18 исполнительных устройств;
  • HD Graphics 530 – GT2: один модуль, 24 исполнительных устройства;
  • HD Graphics 535 – GT3: два модуля, 48 исполнительных устройств;
  • Iris Graphics 540 – GT3e: два модуля, 48 исполнительных устройств и 64-Мбайт eDRAM-буфер;
  • Iris Pro Graphics 580 – GT4e: три модуля, 72 исполнительных устройства и 128-Мбайт eDRAM-буфер.

Наращивая мощность графического ядра, Intel проявила большую заботу и о том, чтобы для его нужд хватало пропускной способности памяти даже в конфигурациях, лишённых дополнительной eDRAM-памяти. С одной стороны, в Skylake обновился контроллер памяти, и теперь он способен работать с DDR4 SDRAM, частота и пропускная способность которой заметно выше, чем у DDR3 SDRAM. С другой стороны, в GPU появилось новая технология Lossless Render Target Compression («направленное на рендеринг сжатие без потерь»). Её суть заключается в том, что все данные, пересылаемые между GPU и системной памятью, которая одновременно является и видеопамятью, предварительно сжимаются, разгружая таким образом полосу пропускания. Применённый алгоритм использует компрессию без потерь, при этом степень сжатия данных может достигать двукратного размера. Несмотря на то, что всякая компрессия требует задействования дополнительных вычислительных ресурсов, инженеры Intel утверждают, что внедрение технологии Lossless Render Target Compression увеличивает быстродействие интегрированного GPU в реальных играх на величину от 3 до 11 процентов.

Упоминания заслуживают и некоторые другие усовершенствования в графическом ядре. Например, размеры собственной кеш-памяти в каждом модуле GPU были увеличены с 512 до 768 Кбайт. Благодаря этому, а также путём оптимизации архитектуры модулей разработчики смогли добиться почти двукратного улучшения скорости заполнения, что дало возможность не только поднять быстродействие GPU при включении полноэкранного сглаживания, но и добавить в число поддерживаемых режимов 16x MSAA.

Одним из основных ориентиров для встроенной в интеловский процессор графики давно выступает полноценная поддержка 4K-разрешений. Именно с таким прицелом Intel непрерывно увеличивает производительность GPU. Но в улучшении нуждается и другая часть – интерфейсные выходы. Нет ничего удивительного в том, что, подобно процессорам Broadwell, в графическом ядре Skylake поддерживается вывод 4K-изображения с частотой развёртки 60 Гц через DisplayPort 1.2 или Embedded DisplayPort 1.3, с частотой 24 Гц – через HDMI 1.4 и с частотой 30 Гц – по технологии Intel Wireless Display или по беспроводному протоколу Miracast. Но в Skylake к этому перечню добавилась и частичная поддержка HDMI 2.0, через который доступны 4K-разрешения с частотой развертки 60 Гц. Правда, для реализации этой возможности нужен некий дополнительный адаптер DisplayPort ↔ HDMI 2.0. Но зато передача сигнала HDMI 2.0 возможна в том числе и по интерфейсу Thunderbolt 3 в системах, имеющих соответствующий контроллер.

Так же как и раньше, GPU процессоров Skylake способен обеспечить вывод изображения на три экрана одновременно.

Нет ничего удивительного в том, что с ростом популярности новых форматов видео графическое ядро Skylake расширило возможности по его аппаратному кодированию и декодированию. Теперь средствами движка Quick Sync стало можно кодировать и декодировать контент в формате H.265/HEVC с 8-битной глубиной цвета, а с привлечением исполнительных устройств GPU – декодировать H.265/HEVC-видео и с 10-битным представлением цвета. К этому добавилась и полностью аппаратная поддержка кодирования в форматах JPEG и MJPEG.

Однако графика Skylake относится к новому, девятому поколению не в только силу перечисленных изменений. Главной причиной послужило то, что в ней сделаны существенные изменения в части поддерживаемых графических API. На данный момент в GPU новых процессоров есть совместимость с DirectX 12, OpenGL 4.4 и OpenCL 2.0, а позднее, по мере совершенствования графического драйвера, к этому списку добавятся будущие версии OpenCL 2.x и OpenGL 5.x, а также поддержка низкоуровневого фреймворка Vulkan. Здесь уместно упомянуть и о том, что в новом GPU реализована полноценная когерентность памяти с процессором, что делает Skylake самым настоящим APU – его графическое и вычислительные ядра могут одновременно работать над одной и той же задачей, используя общие данные.

При этом графическое ядро Skylake может предложить действительно неплохую вычислительную производительность. Работая на частоте 1,15 ГГц, один модуль GPU обеспечивает пиковое быстродействие на уровне 442 Гфлопс. Это значит, что GT4-версии графического ядра Skylake будут обладать теоретическим быстродействием порядка 1,15 Тфлорс, а это не только значительно превышает возможности любой существовавшей до сих пор интегрированной графики, но и приближается к показателям таких дискретных видеоускорителей, как GeForce GTX 750 или GeForce GTX 950M.

С 2010 года производительность интеловской графики возросла в 27 раз

Выводы

Во время тестирования процессоров Core i7-6700K и i5-6600K главными их преимуществами нам показался улучшенный разгон и обновлённая платформа. Никакого же впечатляющего прироста производительности мы тогда не заметили – он уложился во вполне уже привычные 5-10 процентов. Однако теперь становится понятно, что флагманские десктопные CPU для настольных систем были не лучшим полигоном для демонстрации преимуществ микроархитектуры Skylake. Раскрытые компанией Intel подробности дают понять, что на самом деле Skylake – гораздо более прогрессивный проект, чем могло показаться изначально.

Очень большая часть нововведений в микроархитектуре Skylake призвана увеличить энергоэффективность и производительность вариаций этого дизайна, нацеленных на экономичные ультрапортативные и мобильные применения. И нет никаких сомнений в том, что благодаря Skylake ультрабуки и планшеты станут ещё быстрее, ещё легче и ещё автономнее. Осталось лишь дождаться их появления – и мы наверняка сможем убедиться в этом воочию.

Огромное внимание Intel уделила и встроенному GPU, что открывает перед Skylake ещё одну дверь. Кажется, теперь мы сможем увидеть полноценные мобильные игровые системы с интегрированной графикой, которые будут способны соперничать по 3D-производительности с ноутбуками, в которых применяется дискретная видеокарта.

К сожалению, сегодняшнее знакомство с микроархитектурой Skylake всё ещё остаётся неполным. Intel не желает разглашать детальную информацию о строении исполнительных устройств, а также пока не рассказывает о том, какие технологические решения будут реализованы в серверных версиях этих процессоров. Поэтому не исключено, что эта прогрессивная микроархитектура ещё сможет удивить нас своими нераскрытыми возможностями, которые, кстати, могут унаследовать и процессоры для энтузиастов класса Skylake-E.

Оставайтесь с нами, эпоха Skylake только начинается, и мы будем внимательно следить за тем, что она приносит в компьютеры разных предназначений и форм-факторов.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

обзор архитектуры и платформы в целом — Ferra.ru

Как всегда, модели линейки Core i7 поддерживают технологию Hyper-Threading. Ожидается, что Intel выпустит в скором времени линейку двухъядерных Core i3, которые будут иметь четыре потока. Выход настольных процессоров Broadwell лично меня насторожил. Во-первых, их было представлено всего четыре (и вряд ли появятся еще модели). Во-вторых, эти процессоры работают на низких частотах, если их сравнивать, например, с Devil’s Canyon. Появилось опасение, что Skylake-S окажутся в плане частот достаточно унылыми. Однако этого не произошло. Core i5-6600K, по сути, копирует частотные характеристики Core i5-4690K, а Core i7-6700K — Core i7-4790K. Лишь в режиме Turbo Boost флагманский Haswell на 200 МГц опережает топовый Skylake.

Есть у Core i5-6600K и Core i7-6700K еще несколько примечательных особенностей. Так, на себя обращает внимание кэш второго уровня. Теперь он работает в 4-канальном режиме, а не в 8-канальном. Уменьшение ассоциативности, с одной стороны, увеличивает пропускную способность, но, с другой стороны, увеличивает число промахов. Общая архитектура кэша соответствует поколению Haswell: 6 Мбайт для Core i5 и 8 Мбайт для Core i7. В процессорах Broadwell, напомню, используется несколько иная емкость SRAM-памяти: 4 Мбайт для Core i5 и 6 Мбайт для Core i7 соответственно.

Вторая особенность — увеличенный в сравнении с Haswell Refresh уровень TDP: с 88 Вт до 91 Вт. Удаление встроенного преобразователя питания заставило инженеров Intel несколько поднять напряжение процессоров Skylake до 1,2 В.

Боксовых вариантов Core i5-6600K и Core i7-6700K в продаже не будет. В Intel логично решили, что энтузиаст сам разберется, какую систему охлаждения ему приобрести. Стоимость новинок обычная, то есть чуть дороже предшественников. Однако в случае с процессорами Skylake необходимо сравнивать цену платформы в целом: «камня», материнской платы и кита памяти. Под таким углом LGA1151 окажется заметно дороже LGA1150.

www.ferra.ru

процессор от Intel. Описание, характеристики, виды и отзывы

В августе 2015 года было представлено 6-е поколение вычислительных чипов от «Интел» - Skylake. Процессор, относящийся к данному поколению, получил существенно переработанную архитектуру, которая позволяла увеличить быстродействие на 10-15% в сравнении с ЦПУ предыдущего поколения под кодовым названием Haswell. Именно об их технических параметрах, возможностях и видах пойдет далее речь.

Предыстория появления

На текущий момент каждые 2 года Intel обновляет процессорные разъемы. Так, в 2013 году был выпущен LGA1150 вместе с ЦПУ линейки Haswell. Это 4-е поколение ЦПУ на основе архитектуры Core. Затем, год спустя, на смену чипам Haswell пришли Broadwell. Это уже 5-я генерация ЦПУ архитектуры Core. Ключевое их отличие — это обновленный технологический процесс, составляющий 14 нм. А вот процессорная часть не изменилась. Потом на смену 4-у и 5-у семействам чипов на основе архитектуры Core от Intel в 2015 году пришло уже 6-е, которое получило кодовое название Skylake. Процессор любой модели данного поколения производится по аналогичному технологическому процессу — 14 нм (как и Broadwell или 5-я генерация архитектуры Core). Но при этом архитектура вычислительной части была переработана, и это позволило получить определенный прирост быстродействия в 10-15%. Также подсистема питания полупроводникового кристалла была переработана. Теперь регуляторы напряжения ЦПУ вынесены на материнскую плату. Такой инженерный подход позволил сохранить практически без изменений подсистему питания, но при этом улучшил разгонный потенциал центрального процессора.

Сокет и наборы системной логики

Именно сокет LGA1151 предназначен для установки любого десктопного чипа семейства Skylake. Процессор нового поколения в данном случае предназначен для установки в новый разъем и несовместим с ЦПУ предыдущего поколения. Также для поддержки нового поколения центральных процессоров было выпущено новое поколение наборов системной логики. Самым скромным среди них с позиции функционального набора является Н110, отмечают пользователи. Но при этом и стоимость у него соответствующая. Он отлично подойдет для систем бюджетного, начального уровня. Наиболее функциональный и самый дорогостоящий в данном случае набор логики — это Z170. Ключевое его отличие от всех остальных чипсетов — это возможность разгона ЦПУ с разблокированным множителем (именно на установку таких ЦПУ он и ориентирован), встроенного графического ускорителя и даже оперативной памяти. Это отличное решение для создания самых производительных ПК. Остальные же варианты Н170, В170, Q150 и Q170 являются промежуточными между двумя ранее приведенными наборами системной логики, и основное их назначение — это сборка ПК среднего ценового уровня и точно такого же быстродействия.

Технические особенности

Как было отмечено ранее, ядро процессора Skylake было существенно переработано, и за счет этого получился дополнительный прирост быстродействия. Но вот большая его часть не претерпела существенных изменений. Это и первый уровень кеша. Его общий объем для одного блока равен 64кб, которые разделены на 2 части по 32 кб для данных и инструкций. Второй уровень уже не имеет такого разделения, а его объем равен 256 кб. Третий уровень кеша является общим для всех вычислительных ресурсов ЦПУ, и его объем зависит от конкретной модели: от 2 Мб для процессоров Celeron и до 8 Мб для i7. Техпроцесс, как было отмечено ранее, в сравнении с предшественниками не изменился — 14 нм. Северный мост чипсета, как и в предыдущих поколениях процессоров, входит в состав его полупроводникового кристалла. То есть в состав ЦПУ, кроме вычислительной части и графического ускорителя, также включены контроллер PCI-Express и двухканальный контроллер оперативной памяти. Последний может работать уже с DDR4.

Решения начального уровня

Процессоры Intel Skylake начального уровня — это чипы модельных рядов Celeron и Pentium. Физически и программно на этих полупроводниковых кристаллах находится всего 2 вычислительных модуля и столько же потоков обработки данных. Наиболее доступную стоимость имеют первые из них, но при этом и быстродействие у них значительно ниже. Более высокий уровень производительности чипов линейки Pentium обеспечивается увеличенными тактовыми частотами и увеличенным кэшем 3 уровня. Также в последнем случае используется более производительная графическая подсистема HD Graphics с индексом 530, в то время как Celeron оснащается только решением с обозначением 510. Исключением в этом плане является Pentium G4400 c укороченной версией встроенной видеокарты 510. Обособленно в этом семействе держится модель Celeron G3900T с тепловым пакетом всего в 35Вт и пониженной тактовой частотой в 2,6 ГГц. В остальном же более детальные спецификации процессоров Celeron и Pentium 6-й генерации приведены в таблице.

№ п/п

Модель и индекс процессора

Кэш 3 уровня, Мб

Фиксированная частота чипа, ГГц

Количество ядер чипа/ потоков

Тепловой пакет, Вт

Рекомендуемая стоимость, USD

Модель видеокарты HD Graphics

1.

Celeron G 3900T

2

2,6

2 / 2

35

42

510

2.

Celeron G 3900

2,8

51

3.

Celeron G 3920

2,9

52

4.

Pentium G 4400

3

3,3

47

64

5.

Pentium G 4500

3,5

82

530

6.

Pentium G 4520

3,6

93

Средний сегмент

В среднем сегменте данное поколение ЦПУ представлено процессорами линейки Core i3. Всего к этой нише на текущий момент относится 6 чипов. Все они включают 2 физических вычислительных блока и 4 программных потока. То есть в данных процессорах присутствует поддержка фирменной технологии от «Интел», которая называет HyperTrading.

Именно эта особенность и позволяет увеличить в 2 раза количество потоков обработки информации на программном уровне. А вот о поддержке технологии TurboBoost речи в этом случае не идет, и частота у процессора фиксированная. Два представителя данного семейства с индексами 6100Т и 6300Т имеют сниженные тактовые частоты и уменьшенный тепловой пакет в 35 Вт. Это энергоэффективные решения, нацеленные на создание компактных компьютерных систем. Один чип с маркировкой 6098Р укомплектован менее производительной графической системой HD Graphics с индексом 510. Все процессоры серий 60ХХ и 61ХХ имеют 3 Мб кэша 3-го уровня, а серии 63ХХ — 4 Мб. Интегрированный видеоускоритель во всех остальных случаях имеет индекс 530. Более детальные характеристики всех процессоров i3 шестого поколения указаны в таблице далее по тексту.

№ п/п

Наименование процессора

Кеш третьего уровня, Мб

Тактовая частота процессора, ГГц

Количество реальных ядер/программных потоков

Значения теплового пакета, Вт

Стоимость, USD

Модель акселератора HD Graphics

1.

6098Р

3

3,6

2/4

54

117

510

2.

6100Т

3,2

35

530

3.

6300Т

4

3,3

35

147

4.

6100

3

3,7

51

117

5.

6300

4

3,8

147

6.

6320

3,9

157

Наиболее производительные четырехъядерные решения

Наиболее массовым полупроводниковым решением в данном случае является процессор Intel Core i5. Skylake-архитектура в этом случае представлена сразу 9 моделями чипов. Все они имеют 4 вычислительных ядра. Две модели с индексами 6685R и 6585R имеют улучшенную графическую подсистему HD Graphics модели 580, одна, 6402Р, менее производительную — 510. Три чипа 6400Т, 6500Т и 6600Т — это энергоэффективные решения со сниженными частотами и уменьшенным тепловым пакетом. Остальные же процессоры 6400, 6500 и 6600 — это стандартные представители данной линейки устройств. Более же детальные технические спецификации ЦПУ i5 данного поколения приведены в таблице.

№ п/п

Маркировка

Кэш 3 уровня, Мб

Диапазон частот min/max, ГГц

Количество физических ядер/потоков обработки информации

Значение теплового пакета, Вт

Цена на текущий момент, USD

Видеоакселератор HD Graphics

1.

6402Р

6

2,8 / 3,4

4/4

65

187

510

2.

6585R

2,8 / 3,6

213

580

3.

6685R

3,2 / 3,8

224

4.

6400Т

2,2 / 2,8

35

182

530

5.

6500Т

2,5 / 3,1

192

6.

6600Т

2,7 / 3,5

213

7.

6400

2,7 / 3,3

65

182

8.

6500

3,2 / 3,6

202

9.

6600

3,2 / 3,9

224

Восьмипоточные чипы с максимальным быстродействием

Любой процессор Intel Core Skylake, относящийся к линейке i7, имеет полный набор всевозможных технологий (HyperTrading и TurboBoost). Он может обрабатывать данные в 8 потоков и динамически изменять свою частоту.

По уровню производительности эти прцессоры проигрывают лишь наиболее дорогим решениям для компьютерных энтузиастов, у которых разблокирован множитель частоты, и за счет этого можно получить существенный прирост быстродействия. На текущий момент в состав этой линейки входит всего 3 чипа, и их спецификации приведены в таблице ниже. Одна из моделей имеет индекс 6700Т, и это энергоэффектиный ЦПУ для сборки высокопроизводительных компактных систем. Вторая — это 6785R. Она оснащена улучшенной моделью графического акселератора с индексом 580. А последняя, 6700, — это типичный флагман с заблокированным множителем и максимальным быстродействием (если не считать чипов для энтузиастов).

№ п/п

Обозначение ЦПУ

Кеш 3 уровня, Мб

Частотная формула min/max, ГГц

Количество ядер / потоков обработки информации

Заявленный тепловой пакет, Вт

Заявленная стоимость, USD

Видеоадаптер HD Graphics

1.

6700Т

8

2,8 / 3,6

4/8

35

303

530

2.

6785R

3,3 / 3,9

65

320

580

3.

6700

3,4 / 4,0

312

530

Продукты для компьютерных энтузиастов

Как и в предыдущих поколениях процессоров Core, всего 2 модели чипов имеют разблокированный множитель. Первая из них — 6600К. Это типичный четырехъядерный процессор i5. Skylake-архитектура имеет отменный разгонный потенциал. При наличии качественной системы охлаждения его частота может быть увеличена без особых проблем с 3,9 ГГц до 4,6-4,7 ГГц простым поднятием множителя. Если же еще и изменить напряжение на полупроводниковом кристалле процессора, то можно получить даже 5,0 — 5,1 ГГц.

Второй представитель этого семейства - 6700К, который уже относиться к линейке i7. У него параметры, идентичные всем остальным чипам этого модельного ряда. Ключевое отличие, которое отмечают специалисты, — это разблокированный множитель. Ну а частоты, которые можно получить при разгоне, аналогичны 6600К. Их технические спецификации приведены в таблице 5.

№ п/п

Семейство и индекс ЦПУ

Кеш третьего уровня, Мб

Частота min/max, ГГц

Количество ядер / выч. потоков

Тепловой пакет, Вт

Ориентировочная стоимость, USD

Акселератор HD Graphics

1.

«Кор i5 - 6600К»

6

3,5 / 3,9

4/4

91

243

530

2.

«Кор i7 - 6700К»

8

4,0 / 4,2

4/8

530

Отзывы. Итоги

Пользователи утверждают, что достойным продолжением предшествующих поколений чипов стали ЦПУ Skylake. Процессор данного семейства, по их мнению, улучшился как с позиции быстродействия, так и с позиции энергоэффективности.

Жизненный цикл этой платформы лишь только начинается, и по заверениям Intel она будет еще актуальной ближайшие 3 года. Так что самое время покупать новый высокопроизводительный и энергоэффективный персональный компьютер.

fb.ru

Все, что необходимо знать о новых процессорах Intel Skylake

Вслед за не так давно представленными процессорами на микроархитектуре Broadwell выходят модели процессоров следующего поколения – Skylake. В этой статье мы расскажем, чем они отличаются от предшественников и могут предложить пользователям.

Если коротко, то Skylake – это iPhone 6s от мира процессоров. Цикл разработки микропроцессоров в компании Intel строится на системе «tick-tock», где «tick» – изменение технологического процесса (увеличение количества транзисторов на определенной площади), а «tock» – доработка микроархитектуры, повышение производительности. Т.е. если процессоры Broadwell – это первый шаг, «tick», переход на 14 нм технологический процесс, а Skylake – «tock», усовершенствование и доработка. Следовательно, он имеет ряд значительных улучшений в сравнении с Haswell и Broadwell.

Компания, помимо этого, признает, что следующий «tick», а именно выпуск моделей на 10 нм процессе под названием Cannonlake чуть задержится, и в этом году состоится еще один «tock». Тем не менее, в отличие от конкурентов, Intel не планирует упрощать характеристики новой технологии производства, чтобы ускорить ее выход на рынок.

Однако, вернемся к уже имеющимся на рынке процессорам Skylake и рассмотрим подробнее, какие технологические новшества они предлагают.

Поддержка большого количества устройств

Skylake, с полным на то правом, можно назвать одним из наиболее масштабируемых и революционных за всю историю архитектуры Core. Эти процессоры используются в огромном ассортименте устройств: от небольших, компактных чипов в мобильных устройствах до мощных ПК и серверных решений. Intel разделила все процессоры семейства Skylake на несколько линеек: Y, U, H и S. Процессоры Skylake-Y (Core m3, m5 и m7) предназначены для планшетов и гибридных мини-компьютеров. На процессорах линейки U будут работать ультрабуки, а на Skylake-H – высокопроизводительные ноутбуки для бизнеса и игр. Ну, а серия S предназначена для настольных персональных компьютеров.

Изменение микроархитектуры

Если сравнивать с предыдущими моделями, Haswell и Broadwell, изменения коснулись вычислительной части ядра минимально, т.е. фактически они работают быстрее предшественников процентов на 10%. Упор в разработке сделан на изменение самой структуры процессора: блоков, модулей и их расположения. Благодаря этому, новые чипы Intel Core шестого поколения окончательно превратились из классических процессоров в так называемые «системы на чипе» (SoC).

В части быстродействия основной упор в Skylake сделан на увеличение эффективности работы с векторными инструкциями. Выполнение AVX2- и FMA-команд в этих процессорах ускорилось весьма значительно, и, благодаря этому, в приложениях, их использующих, а это, в первую очередь, программы для создания и обработки видеоконтента, прирост производительности может доходить и до 10-15 процентов.

Использование памяти DDR4

Самое существенное и заметное изменение в архитектуре Skylake связано с использованием нового контроллера оперативной памяти памяти: теперь здесь в наличии полноценная поддержка нового стандарта DDR4. Прежде полноценный контроллер DDR4 был на вооружении только серверных чипов Xeon и выполненных на основе их дизайна геймерских чипах Core i7, но, фактически, начиная со Skylake, память DDR4 начинает свое наступление на рынок настольных и мобильных систем. Вместо теоретических 25,6 Гбайт/с пропускной способности подсистемы памяти, достигаемой на платформе Haswell при использовании микросхем типа DDR3-1600, новые модули DDR4-2133 для процессоров Skylake при работе в двухканальном режиме обмениваются данными с CPU на скорости до 34 Гбайт/с.

Улучшение встроенной графической подсистемы

Процессоры Skylake обладают новым встроенным видеоядром HD Graphics 530, которое, благодаря использованию вышеупомнутой DDR4, получает преимущество не только в производительности, но и в эффективности. В аккурат к появлению Windows 10 в новой графике Intel появилась полноценная аппаратная поддержка технологий Open CL 2.0 и Open GL 4.4 для более четкой и качественной картинки. По данным Intel, новая графика обеспечит прирост производительности в 3D-играх до 40% по сравнению с предыдущим поколением.

Кроме того, он поддерживает новейший набор библиотек DirectX 12 и сможет управиться с играми вроде World of Tanks на средних настройках качества графики в разрешении 1080p и выдавать при этом порядка 30 fps.

Что касается вывода изображения, то Intel идет в ногу со временем и учитывает высокие требования к пропускной способности 4К-дисплеев. Под управлением процессоров Skylake видеосигнал может выводиться одновременно на три дисплея.

Повышение эффективности работы

По сравнению с Haswell, у чипов Skylake снижено потребление энергии уже только лишь за счет уменьшения технологического процесса с 22 до 14 нм.

Поскольку не только центральный процессор, но и другие компоненты платформы (чипсет, сетевые контроллеры и т.п.) становятся более энергоэффективными, потребление мощности системой, как обещает Intel, снижается на величину до 80%, что особенно важно, учитывая портативную направленность многих моделей.

Выход нового сокета LGA1151

Выход поколения интеловских процессоров для настольных систем, разработанных в рамках фазы «tоck», всегда сопровождался сменой процессорного разъема. Skylake – не исключение. Одновременно с этими процессорами в обиход входит и новый сокет – LGA1151, т.е. переход на такой процессор потребует смены материнской платы. Необходимость введения нового стандарта была обусловлена введением поддержки памяти стандарта DDR4, удалением из процессора встроенного преобразователя питания (FIVR) и внедрением новой скоростной шины. Новая система получила более скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, LGA1151-системы могут похвастать наличием многочисленных скоростных интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

На момент публикации статьи для новых процессоров в нашем каталоге уже были доступны около 50 материнских плат от ASUS, ASRock, Gigabyte и других известных производителей.

Оптимизация для работы с Windows 10

По заявлению производителя, Skylake наиболее подходит для работы на операционной системе Windows 10, это обусловлено не только оптимизацией команд и программного кода ОС, но и особенностями самих процессоров.

Технология Intel Speed Shift, которая распределяет нагрузку между приложениями, позволяет снизить задержки в работе почти в тридцать раз, увеличив общую производительность системы на 20-25%.

Используется также поддержка тач-взаимодеиствия и голосового помощника Cortana. Владельцу ПК под управлением Windows 10, построенного на базе одного из этих новых процессоров, достаточно воскликнуть «Эй, Cortana», чтобы цифровой сигнальный процессор, внутри чипа, услышал голос пользователя и отдал команду на выход системы из режима пониженного энергопотребления. После пробуждения Cortana берет на себя управление и пользователь может отдавать цифровому помощники все стандартные голосовые команды, в том числе на воспроизведение музыки или видео.

Также новыми процессорами в сочетании с Windows 10 осуществлена поддержка технологии Intel RealSense, использующую специальную камеру. Благодаря сенсору глубины обеспечиваются возможности 3D-видения: иными словами, компьютер может воспринимать окружающее пространство подобно человеку. Система в числе прочего обеспечивает функции распознавания лиц, отслеживания эмоций, 3D-сканирования, извлечения фона и распознавания жестов с контролем 10 пальцев.

В дополнение, архитектура Skylake также поддерживает инициативу Intel по отказу от проводных подключений для беспроводной передачи мультимедийного контента. Речь идет о стандартах 802.11ad (WiGig), Wireless Display (WiDi) 6.0 и технологии беспроводной зарядки устройств под названием Rezence.

Возможности для «разгона»

Новые CPU также могут похвасться куда более высоким, чем у предшественников разгонным потенциалом. Даже для мобильных версии Core M доступна углубленная возможность оверклокинга. Skylake предоставляет больше свободы: теперь становится возможным свободно управлять множителем и базовой частотой, тогда как модели «K» поколения Haswell можно было разгонять путем выбора всего между тремя вариантами базовой частоты – 100, 125 и 166 МГц. Это должно облегчить задачу определения максимальной частоты для более-менее стабильной работы в режиме экстремального разгона. На уровне чипсета тактовая частота контроллера может регулироваться вплоть до 200 МГц с шагом 1 МГц, а для некоторых вариантов будет доступен разгон до 250 МГц и даже выше, с точностью изменения даже менее 1 МГц.

Также присутствуют широкие настройки по «разгону» памяти DDR4: будет доступна регулировка частоты с шагом в 100 и 133 МГц, с порогом фактической частоты как минимум до 4133 МГц.

В итоге можно выделить следующие особенности процессоров Skylake:

  • низкое энергопотребление;
  • хороший разгонный потенциал;
  • возможность использования памяти как DDR3, так и DDR4;
  • высокие тактовые частоты работы;
  • улучшенное графическое ядро;
  • поддержка Windows 10;
  • вариативность систем и большое количество моделей;
  • улучшенная производительность при работе с 4K;

Таким образом, процессоры Skylake привлекательны не только новой микроархитектурой с возросшей производительностью и поддержкой более скоростной и прогрессивной памяти, но и тем, что вся платформа в целом стала заметно лучше и функциональнее. Сегодняшние процессоры Intel с архитектурой Skylake найдут применение в широком спектре форм-факторов персональных вычислительных устройств, от ультрамобильных Intel Compute Stick и Intel NUC, трансформеров, конвертируемых систем «2-в-1» и моноблоков с большими 4K-экранами до мобильных рабочих станций.

Платиновый партнёр Intel®в РБ – ООО «БВКомпьютерс»

Юрий Алисиевич, Торговый портал Shop.by

На правах рекламы

shop.by

Процессоры Intel Skylake | NB-GUIDE.INFO

Во второй половине 2015 года мир увидели первые процессоры Intel Skylake. На них возлагалась большая надежда, так как Haswell уже были староваты, а Broadwell так и не снискали должной популярности. Большинство ноутбуков несли в себе чипы Haswell, которые производились по 22-нм техпроцессу, и, конечно, переход на 14 нм был бы очень неплохим шагом вперед.

Skylake является шестым поколением процессоров Core. В Intel есть своя стратегия «тик-так», которая определяет, будет ли в этом году обновление процессоров «тиком» или «таком». «Тик» — это переход на меньший техпроцесс и небольшие усовершенствования, «так» — уже более крупные изменения без нового техпроцесса.

Haswell — 22 нм, «так»
Broadwell — 14 нм, «тик»
Skylake — 14 нм, новая архитектура, «так»

Кроме техпроцесса, есть у этих процессоров и еще большое количество полезных функций. Так, они поддерживают не только «старую» оперативную память DDR3L, но и новую DDR4, которая работает быстрее и может вместить в один слот больший объем памяти. Также поддерживается технология Thunderbolt 3.0. Встроенная графика была улучшена — в зависимости от конкретного процессора она разная, с разной тактовой частотой (см. таблицы ниже). Еще следует упомянуть поддержку SATA Express и 512-битных векторных инструкций AVX-512, что увеличило производительность процессоров Skylake на 20-30% по сравнению с Broadwell и Haswell. Появились 4-ядерные Core i5, был увеличен кэш 2 и 3 уровня.

Для ноутбуков, как и всегда, было представлено сразу несколько линеек с разной производительностью и энергопотреблением.

Skylake-U

Энергоэффективные процессоры для тонких и легких ноутбуков.

Модель Ядра/потоки Т.частота — Turbo, ГГц Кэш L3, Мб TDP, Вт Графика Т.частота — макс., МГц
Core i7 6650U 2/4 2,2-3,4 4 15 Iris 540 300-1050
Core i7 6600U 2/4 2,6-3,4 4 15 HD 520 300-1050
Core i7 6567U 2/4 3,3-3,6 4 28 Iris 550 300-1100
Core i7 6560U 2/4 2,2-3,2 4 15 Iris 540 300-1050
Core i7 6500U 2/4 2,5-3,1 4 15 HD 520 300-1050
Core i5 6360U 2/4 2,0-3,1 4 15 Iris 540 300-1000
Core i5 6300U 2/4 2,4-3,0 3 15 HD 520 300-1000
Core i5 6287U 2/4 3,1-3,5 4 28 Iris 550 300-1100
Core i5 6267U 2/4 2,9-3,3 4 28 Iris 550 300-1050
Core i5 6260U 2/4 1,8-2,9 4 15 Iris 540 300-950
Core i5 6200U 2/4 2,3-2,8 3 15 HD 520 300-1000
Core i3 6167U 2/4 2,7 3 28 Iris 550 300-1000
Core i3 6100U 2/4 2,3 3 15 HD 520 300-1000
Pentium 4405U 2/4 2,1 2 15 HD 510 300-950
Celeron 3955U 2/2 2,0 2 15 HD 510 300-900
Celeron 3855U 2/2 1,6 2 15 HD 510 300-900

Skylake-H

Производительные процессоры для игровых ноутбуков, рабочих станций и ноутбуков для замены настольного компьютера.

Модель Ядра/потоки Т.частота — Turbo, ГГц Кэш L3, Мб TDP, Вт Графика Т.частота — макс.
Core i7 6970HQ 4/8 2,8-3,7 8 45 Iris Pro 580 350-1050
Core i7 6920HQ 4/8 2,9-3,8 8 45 HD 530 350-1050
Core i7 6870HQ 4/8 2,7-3,6 8 45 Iris Pro 580 350-1000
Core i7 6820HQ 4/8 2,7-3,6 8 45 HD 530 350-1050
Core i7 6820HK 4/8 2,7-3,6 8 45 HD 530 350-1050
Core i7 6770HQ 4/8 2,6-3,5 6 45 Iris Pro 580 350-950
Core i7 6700HQ 4/8 2,6-3,5 6 45 HD 530 350-1050
Core i5 6440HQ 4/4 2,6-3,5 6 45 HD 530 350-950
Core i5 6350HQ 4/4 2,3-3,2 6 45 Iris Pro 580 350-900
Core i5 6300HQ 4/4 2,3-3,2 6 45 HD 530 350-950
Core i3 6100H 2/4 2,7 3 35 HD 530 350-900

Skylake-Y

Процессоры, которым не требуется вентилятор. По производительности они слабоваты, устанавливаются в очень тонкие ноутбуки и планшеты.

Модель Ядра/потоки Т.частота — Turbo, ГГц Кэш L3, Мб TDP, Вт Графика Т.частота — макс.
Core m7 6Y75 2/4 1,2-3,1 4 4,5 HD 515 300-1000
Core m5 6Y57 2/4 1,1-2,8 4 4,5 HD 515 300-900
Core m5 6Y54 2/4 1,1-2,7 4 4,5 HD 515 300-900
Core m3 6Y30 2/4 0,9-2,2 4 4,5 HD 515 300-850
Pentium 4405Y 2/4 1,5 2 6 HD 510 300-800

Поделиться ссылкой:

Читайте также:

www.nb-guide.info

Intel анонсировала новые процессоры Skylake-S

Первое сентября — не только День Знаний. В этот день корпорация Intel пополнила линейку процессоров для настольных систем Skylake-S новыми моделями, и теперь она выглядит полноценно. Изначально доступными чипами с новой микроархитектурой были лишь оверклокерские модели Core i7-6700K и Core i5-6600K, но теперь количество наименований в серии возросло до двадцати, на любой вкус и кошелёк. О двух старших моделях мы уже знаем практически всё, а остальные делятся на две подгруппы — десять процессоров с теплопакетом 65 ватт и восемь экономичных чипов с TDP всего 35 ватт.

Все процессоры семейства Skylake-S совместимы с чипсетами Intel Z170, h270 и B150, благо, первые модели системных плат с системной логикой, отличной от старшей Z170 уже начали появляться. Большинство системных плат с разъёмом LGA 1151 рассчитаны на использование памяти DDR4, как более прогрессивной. По сравнению с Haswell новая платформа обладает большими возможностями, в том числе, и по подключению современных высокоскоростных накопителей, а также лучшей экономичностью. На момент анонса линейка процессоров Intel Skylake-S выглядит следующим образом:

Массовые модели Skylake-S начинаются с Core i7-6700, которая во всем аналогична старшей Core i7-6700K, за исключением заблокированного множителя и менее высоких тактовых частот. Впрочем, с учётом свободной регулировки BCLK на платформе Skylake, это не слишком ограничивает возможности по разгону. Все модели Core i7 наделены 8 мегабайтами кеша второго уровня, в моделях Core i5 его объём ограничен 6 мегабайтами. Кроме того, Core i5 не имеют поддержки Hyper-Threading.

Intel также планирует представить и процессоры семейств Core i3 и Pentium на основе той же архитектуры, но сроки появления этих чипов в продаже пока неизвестны. Эти двухъядерные процессоры получат 4 и 3 Мбайт кеша L2, соответственно, при этом Core i3 будут наделены также поддержкой Hyper-Threading.

Процессоры Skylake-S с суффиксом T в названии относятся к «экономичной» линейке; все они имеют TDP на уровне 35 ватт. За это, разумеется, пришлось заплатить снижением тактовых частот — так, старший Core i7-6700T работает на частоте всего 2,8 ГГц в базовом режиме, хотя в турборежиме она может возрастать до вполне солидных 3,6 ГГц. Как и их менее экономичные собратья, процессоры с суффиксом Т наделены 8 Мбайт кеша в случае с Core i7 и 6 Мбайт — в случае с Core i5.

Новые процессоры Skylake-S поставляются в розничные торговые сети в новой красочной коробке, но не комплектуются при этом кулерами, хотя Intel и имеет в своём ассортименте ряд решений, как воздушных, так и жидкостных.

Тем, кто уже сейчас планирует покупку платформы LGA 1151, стоит учесть, что, несмотря на обещанную доступность новых процессоров Intel с момента анонса, некоторое время чипы на базе архитектуры Skylake-S могут быть дефицитом.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Core (микроархитектура) — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 июля 2019; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 июля 2019; проверки требуют 4 правки. Эта статья о микроархитектуре процессоров семейства Intel Core 2. О семействе мобильных процессоров Intel Core, см. статью Intel Core.

Микроархитектура Intel Core является многоядерной микропроцессорной архитектурой, представленной фирмой Intel в 1-м квартале 2006 года. Микроархитектура Intel Core основана на обновлённой версии ядра Yonah и может рассматриваться в качестве последней итерации микроархитектуры Intel P6, которая ведёт свою историю с Pentium Pro, представленного в 1995 году. Чрезмерно высокое энергопотребление и завышенные требования к охлаждению процессоров, основанных на микроархитектуре NetBurst, и, в результате, неспособность эффективно увеличивать тактовую частоту, а также другие узкие места, такие, как неэффективность конвейера, являются главными причинами, почему Intel отказалась от микроархитектуры NetBurst. Микроархитектура Intel Core была разработана командой Intel Israel (IDC), которая ранее разработала мобильный процессор Pentium M .

Микроархитектура Intel Core обеспечивает высокую производительность, энергосбережение и быстродействие в многозадачных средах. Она имеет несколько ядер и аппаратную поддержку виртуализации (Intel VT), а также Intel 64 и SSE3.

Первые процессоры, использовавшие эту архитектуру, входили в семейство Core 2 и вышли под кодовыми названиями Merom, Conroe и Woodcrest. Merom предназначался для мобильных компьютеров, Conroe — для настольных систем, а Woodcrest — для серверов и рабочих станций. Хотя их архитектуры идентичны, эти три линии процессоров отличаются используемым разъёмом, типом шины и потреблением энергии. Часть процессоров основанных на микроархитектуре Core имеет марку Pentium Dual-Core, а процессоры низшего ценового сегмента — марку Celeron. Процессоры для серверов и рабочих станций продаются под маркой Xeon, а для пользователей настольных и мобильных ПК — как Core 2. Несмотря на своё название, процессоры, продаваемые как Intel Core, фактически не используют микроархитектуру Core.

Wide Dynamic Execution[править | править код]

Микроархитектура Intel Core 2.

Микроархитектура Intel Core проектирована с нуля, но по философии микроархитектуры Pentium M. Длина исполнительного конвейера составляет 14 ступеней — менее половины от длины конвейера в предыдущем поколении Prescott (31 ступень), является ключевой особенностью технологии Динамического исполнения команд.

Каждое ядро микропроцессора может получать, обрабатывать, исполнять и отбрасывать до четырёх полных команд одновременно. Это значительно повышает производительность по сравнению с конкурирующими процессорными технологиями P6, P-M (Banias, Dothan, and Yonah) и NetBurst), поддерживающими одновременную обработку только трех команд.

Advanced Smart Cache[править | править код]

Новая архитектура оптимизирована под двухъядерную архитектуру процессора. Основной кэш первого уровня L1 связан с общей для обоих ядер динамически распределяемой кэш-памятью второго уровня L2 (данные, содержащиеся в L1, обязательно содержатся и в L2) для достижения максимальной производительности на ватт потребляемой мощности и улучшения масштабируемости.

Macro Fusion[править | править код]

Ещё одной новой технологией, включенной в микроархитектуру Intel Core при проектировании, является Технология макро-слияния (англ. Macro Fusion), позволяющая объединять некоторые распространенные инструкции x86 в одну команду для исполнения. В предыдущих версиях процессорной микроархитектуры каждая инструкция декодировалась независимо от остальных. При использовании Macro Fusion некоторые пары инструкций (например, инструкция сравнения и условного перехода) при декодировании могут объединяться в одну микроинструкцию (англ. micro-op), которая в дальнейшем будет выполняться именно как одна микроинструкция. Для эффективного поддержания этой технологии в архитектуре Intel Core используются расширенные блоки АЛУ, которые способны поддержать выполнение таких слитых микроинструкций.

Больше не
производятся
Актуальные
Разрядность 32 бита (архитектура x86-32/IA-32):
Разрядность 64 бита (архитектура x86-64):
  • Atom (после 2014 года)
  • Celeron
  • Pentium
  • Core
  • Core 2
  • i3
  • i5
  • i7
  • i9
  • Xeon
    • E3, E5, E7, D, W, X, L, E, PLATINUM, GOLD, SILVER, BRONZE
  • Phi
Списки

ru.wikipedia.org


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.