Светодиодная печать что это такое


LED-печать: как это работает?

Новые компактные цветные LED-принтеры сегмента SOHO — OKI C301dn и C321dn — помимо документов могут печатать визитки, обложки для DVD, а также брошюры и буклеты

Светодиодная технология (LED, Light Emitting Diode) зарекомендовала себя как одна из лучших в области печати. Она появилась в 1987 году, когда японская компания OKI Printing Solutions разработала и выпустила на рынок первый в мире светодиодный принтер. За 25 лет данная технология получила на рынке широкое распространение, и сегодня большинство крупнейших производителей офисной техники имеют в своих продуктовых линейках принтеры и МФУ, основанные на принципе LED. В чем же главное преимущество светодиодной технологии в сравнении с основным конкурентом — лазерной печатью?

Принцип работы

Принцип действия светодиодных принтеров практически идентичен принципу работы лазерных устройств. Важнейшей частью принтера или МФУ является фотовал, который представляет собой цилиндр со специальным фотополупроводниковым покрытием, способным в зависимости от освещения менять свое электрическое сопротивление. Внутри принтера данный материал заряжается отрицательными носителями от специального зарядного валика. После зарядки происходит процесс «засвечивания» отрицательно заряженной поверхности вала. Именно здесь проявляется главное отличие светодиодных принтеров от лазерных: засветка производится не направленным при помощи подвижного зеркала лучом лазера, а посредством неподвижной линейки светодиодов, расположенной по всей поверхности вала (в такой линейке их может быть до 10 000 штук). При включении определенных из них происходит точечная засветка и формирование электростатического прообраза будущего изображения. Далее процесс идет так же, как и в лазерных принтерах: с помощью магнитного вала к засвеченным участкам фотовала, потерявшим заряд, притягивается тонер, после чего с фотовала он переносится на положительно заряженную бумагу и фиксируется посредством нагревательного вала (с температурой около 200 °C). Благодаря засветке с помощью светодиодной линейки такие принтеры имеют ряд  преимуществ. Во-первых, в них равномерно засвечиваются все участки фотовала, в то время как у лазерных устройств иногда возникают проблемы с изображением по краям листа. Во-вторых, существует возможность регулировки размера точки и яркости светодиода, вследствие чего изображение оказывается более качественным. Кроме того, светодиодные принтеры демонстрируют меньшую себестоимость отпечатков по сравнению с лазерными, а отсутствие подвижного зеркала увеличивает надежность оборудования.

 

Перспективы развития

В целом, стоит отметить, что технология LED-печати, которая десять лет назад еще только делала первые шаги в коммерческих продуктах, сегодня уже серьезно теснит конкурентов, предлагая реальные преимущества перед лазерной печатью. Прямое подтверждение тому —  недавний доклад OKI Printing Solutions об успехах развития и продаж LED-устройств: в Японии ее оборот вырос на 11%, а в 2012 году компания ожидает увеличения количества проданных устройств на 40%. Впрочем, справедливо отметить и то, что классической лазерной печати пока не грозит полное вытеснение с рынка, ведь она тоже из года в год совершенствуется.

Сравнение технологий: лазер против светодиодов

Источники света

В основе технологии лазерной и светодиодной печати лежит принцип сухого электростатического переноса. Единственное, что их отличает, — это источники света. В лазерных принтерах это луч лазера, отраженный от быстро вращающегося многогранного зеркала. В LED-решениях в данной роли выступает специальная линейка, на которой размещается от 2500 до 10 000 светодиодов.

Качество отпечатков

Описанные выше различия в построении изображения хорошо видны при сильном увеличении мелкого текста. К примеру, ниже приведены два фрагмента текста, напечатанные лазерным (1) и светодиодным (2) принтерами. Как видно по картинке, LED-модель существенно лучше справляется с мелкими элементами.

nabiraem.ru

Светодиодный принтер - это... Что такое Светодиодный принтер?

Светодиодный принтер (англ. Light emitting diode printer, LED printer) — один из видов принтеров, являющий собой параллельную ветвь развития технологии лазерной печати. Как и лазерный, светодиодный принтер предназначен для переноса текстового или графического изображения с цифрового носителя на бумагу. Скорость светодиодных аппаратов примерно равна скорости лазерных, но у этих двух технологий есть и принципиальные отличия.

Светодиодный принтер Kodak

Принцип работы

Принципиальное отличие светодиодного принтера от лазерного заключается в механизме освещения светочувствительного вала. В случае лазерной технологии это делается одним источником света (лазером), который с помощью сканирующей системы призм и зеркал пробегает по всей поверхности вала. В светодиодных же принтерах вместо лазера используется светодиодная линейка, расположенная вдоль всей поверхности вала. Количество светодиодов в линейке составляет от 2,5 до 10 тыс. штук, в зависимости от разрешения принтера.

Принцип работы светодиодных принтеров во многом схож с принципом работы лазерных. Работа принтера основана на принципе сухого электростатического переноса — источник света освещает поверхность светочувствительного вала, воздействие света вызывает изменение заряда в освещенных частях барабана, за счет чего к ним приклеивается порошкообразный тонер. Методы переноса тонера на барабан, на бумагу, и закрепления его в печке, идентичны аналогичным методам применяющимся в лазерной печати — вал прокатывается по бумаге, вдавливая в неё тонер, после чего бумага передается в устройство термического закрепления (печку), где за счет высокой температуры и давления тонер закрепляется на бумаге.

История. Распространенные заблуждения

Светодиодная технология печати была изобретена фирмой Casio. Первый светодиодный принтер был выпущен в продажу компанией OKI в 1987 году, а в 1998 году той же компанией был выпущен первый цветной светодиодный принтер.

В Россию светодиодные принтеры пришли в 1996 году, когда OKI открыло представительство в Москве. В том же году OKI начинает продажи в России своего самого ходового принтера, OkiPage 4W, и представители OKI в России совершают свою крупнейшую ошибку, последствия которой до сих пор ощущаются на рынке светодиодной печати — принтер, разработанный японскими специалистами OKI для домашнего использования, в России, переживающей трудные времена, позиционируется как самый дешевый принтер для офиса.
И поскольку OkiPage 4W стоил значительно дешевле своих лазерных аналогов, его массово начинают раскупать в офисы малого, среднего, а порой и крупного бизнеса. Где недорогой принтер, рассчитанный на домашние объемы печати, быстро выходит из строя, не справляясь с офисными потребностями — максимально допустимый объем печати на OkiPage 4W 2500 листов в месяц, на практике же в российских офисах на нем печатали в два—три раза больше[источник не указан 1309 дней].

В принтере предполагалось использовать новую по тем временам разработку OKI — сферический тонер, однако в России практика использования оригинальных расходных материалов ещё не прижилась, и картриджи заправляли, существенно снижая качество печати.

Все эти ошибки в позиционировании и эксплуатации привели к тому, что в России отношение к светодиодным принтерам в большей степени негативное. Часто можно услышать, что эти принтеры[1]:

  • не надежны (так считают люди, в офисе которых в свое время побывал OkiPage 4W), в то время как современные светодиодные принтеры дают максимальную в своем классе нагрузку;
  • дают гораздо худшее качество печати чем лазерные, хотя на самом деле, при использовании оригинальных расходных материалов светодиодные принтеры даже превосходят лазерные по четкости печати (см. раздел преимущества светодиодной технологии). В то же время использования оригинальных расходных материалов значительно увеличивает стоимость отпечатка;
  • дороги в эксплуатации. Это заблуждение происходит от того, что большинство российских пользователей все ещё заправляет картриджи, снижая тем самым расходы на печать, а вместе с ними и качество печати. При использовании оригинальных расходников и в светодиодных, и в лазерных принтерах, расходы на эксплуатацию светодиодных принтеров будут существенно ниже, вплотную приближаясь к стоимости заправки лазерных.

В 1999 году свои светодиодные принтеры в Россию начинают продавать Panasonic и Kyocera, однако OKI продолжает оставаться крупнейшим производителем LED-принтеров, и именно их принтеры вспоминаются в первую очередь, при упоминании светодиодной технологии.

Преимущества светодиодной технологии

Светодиодная технология имеет следующие преимущества[2] в сравнении с лазерной:

  • светодиодная линейка значительно компактнее сканирующей системы лазерных принтеров, что сказывается и на размерах самих принтеров. Цветные светодиодные принтеры почти в два раза меньше своих лазерных аналогов, для монохромных же моделей разница в размере заметна, но не столь ярко выражена;
  • в силу отсутствия в механизме формирования изображения подвижных частей, механическая часть теоретически проще и надежнее. Однако стоит учитывать, что ресурс современных лазерных принтеров среднего и старшего классов составляет от одного до десяти и более миллионов страниц, при том что блок лазера с блоком развертки выходит из строя реже всего;
  • каждый светодиод в линейке даёт световое пятно одинаковой формы — в лазерных принтерах используются дополнительные линзы, корректирующие изменение геометрии светового пятна на краях фотобарабана. На практике разница незаметна;
  • данные на светодиодную линейку могут подаваться параллельно — электромагнитное излучение от включения большого количества элементов будет близко к шумовому и значительно сложнее осуществлять перехват данных с помощью радиосканера. Однако на практике к светодиодной линейке подходит шина с небольшим количеством проводников — данные к линейке подаются последовательно, что упрощает задачу перехвата.

Недостатки светодиодной технологии

  • Для современной микроэлектроники характерен существенный разброс параметров — производители заявляют ±12-15 %, реальный же разброс в партии достигает ±30 %[3][4]. При разрешении 600dpi и ширине зоны печати до 216 мм (производители принтеров учитывают не только формат А4, но и американский Letter — 8,5 дюймов) светодиодная линейка должна состоять из примерно 5000 светодиодов — и для каждого из них невозможно предусмотреть систему компенсации отклонения яркости свечения — в результате неравномерность свечения отдельных светодиодов приводит к полосам вдоль хода движения бумаги с повышенной и пониженной насыщенностью печати. В отличие от светодиодных, для лазерных принтеров необходимо корректировать параметры только одного источника — лазерного светодиода; при этом можно проводить прямое измерение яркости луча непосредственно во время печати путём установки фотодатчика на пути сканирования луча вне рабочей зоны. Кроме того, в лазерном принтере можно ввести компенсацию отклонения яркости луча изменением электрических параметров — например, напряжением заряда фотобарабана.
  • Для повышения качества изображения (сглаживания контуров) в ксерографической печати используют изменение размера (или насыщенности) элементарных точек и сдвиг на половину диаметра точки. Изменение размера или насыщенности доступно и для светодиодной, и для лазерной технологии. Сдвиг для светодиодных моделей невозможен (светодиоды жестко фиксированы), в то время как для лазерной технологии это легко реализуется сдвигом времени включения лазера.
  • Из-за миниатюрных размеров ограничены возможности фокусировки света от отдельных диодов линейки. Применение лазерной технологии позволяет использовать длиннофокусную схему — луч на достаточно большой длине имеет малую площадь сечения, при этом гораздо ниже требования по точности установки и юстировку оптики.
  • Максимальная производительность представленных на рынке устройств со светодиодной технологией составляет до 40 страниц в минуту; лазерные устройства демонстрируют до 110—135 страниц в минуту и больше.

Типичной иллюстрацией недостатков светодиодной технологии может служить решение компании Киосера-Мита (Kyocera-Mita): в моделях цветных принтеров FS-C5015/FS-C5025/FS-C5030 использовались светодиодные линейки; в последующих поколениях производитель отказался от них в пользу лазерных блоков (модели FS-C5100/FS-C5200/FS-C5300/FS-C5400, и затем FS-C5150/FS-C5250/FS-C5350). При этом габариты принтеров практически не изменились.

Сферический тонер с двойной структурой

Сферический тонер с двойной структурой применяется и в лазерной печати, однако разработан он был компанией OKI, для своих светодиодных принтеров. В настоящий момент сферический тонер производят большинство компаний, поставляющих лазерные принтеры.

Сферический тонер, как явствует из названия, представляет собой микроскопические шарики примерно равного размера, в результате чего при переносе изображения на бумагу, сферический тонер позволяет получить более четкую точку, нежели молотый тонер, растискивающий по бумаге и в точку, и в овал, и в нечто бесформенное.

Тонер с двойной структурой состоит из твердой оболочки, и более мягкого, легкоплавкого ядра. В печке сначала плавится ядро, и к моменту, когда расплавится более плотная оболочка, ядро тонера уже представляет собой жидкость, которая, попадая на бумагу, глубоко проникает в ее структуру.

Из-за такой сложной структуры, сферический тонер значительно дороже обычного молотого, который применяется в лазерных принтерах.

Цветные светодиодные принтеры

Файл цветного изображения (в формате jpg, bmp, pdf и т. д.) передается на принтер, где растровый процессор принтера раскладывает изображения на 4 базовых цвета: cyan, yellow, magenta и black.

Дальнейший процесс сходен с процессом печати монохромного изображения, с той лишь разницей, что каждый из четырех фотобарабанов наносит на бумагу свой цвет. Большинство светодиодных принтеров делают это за один проход бумаги. В результате, после смешения цветов на бумаге, и термического закрепления тонера в печке, мы имеем цветное изображение.

Все недостатки светодиодной печати перед лазерной актуальны и для цветных принтеров. Сравнимая надежность, качество, но гораздо большая себестоимость не компенсируются меньшим размером принтеров.

Скорость печати и допустимая нагрузка

Скорость печати от применения светодиодной линейки или лазера не зависит, а определяется скоростью работы механизма. Самый производительный из имеющихся на рынке на декабрь 2009 года светодиодных принтеров, OKI С9650, способен выдавать в минуту 36 цветных страниц, или 40 монохромных формата А4. Предельно допустимая нагрузка на него составляет 150 000 страниц в месяц[5], что сравнимо с лазерными принтерами среднего уровня.

Примечания

Ссылки

dal.academic.ru

Светодиодная технология печати OKI

Главная  /  Светодиодная технология печати OKI

Уже много лет Оки использует в своих страничных принтерах цифровую светодиодную технологию. Давайте посмотрим, почему же теперь и наши конкуренты переходят на эту лидирующую технологию.
Чем занимается эта часть принтера? Для того, чтобы это понять, необходимо вникнуть в суть электрографического процесса, но его можно представить так:


Источник света, контролируемый центральным процессором принтера излучает свет на светочувствительный барабан, создавая на нем дополнительный заряд, как на магните. Барабан врящаясь и проходя мимо бункера с тонером, вызывает притягивание частичек тонера в места, куда светил источник. Затем барабан вращается далее, проходя мимо бумаги, на которую перетягиваются эти частички, создавая тем самым на ней изображение. В конце процесса тонер закрепляется на бумаге при помощи термоэлемента (печки).
Источником света в этом процессе может быть либо сравнительно крупный лазерный блок, либо компактная светодиодная линейка.
Исследователи в Оки внимательно изучили оба источника света и пришли к выводу, что цифровой светодиодный источник света гораздо более интересен. Он состоит из массива тысяч индивидуальных светодиодных источников, перекрывая всю ширину светочувствительного барабана, которые через фокусирующие линзочки светят непосредственно на поверхность барабана.


Превосходное качество изображения посредством более аккуратной засветки барабана
Улучшенное качество изображения можно объяснить конструкцией двух источников света. Лазерный источник представляет из себя большой, сравнительно тяжелый, но весьма деликатный механизм, упрятанный в большой корпус. Корпус содержит один лазерный источник света и сложную систему линз и вращающихся зеркал, которые разворачивают лазерный луч вдоль светочувствительного барабана во время его вращения. Сложная система согласования времени свечения используется для того, чтобы обеспечить горизонтальность наносимых линий при постоянном вращении барабана. Края барабана находятся дальше от лазера, чем центр, поэтому необходимо корректировать и искривление, чтобы добиться приемлемого качества.
Лазерные источники света за последние годы значительно улучшились и многие проблемы качества печати, возникающие в начале, сейчас решены, однако Оки все равно считает светодиодную технологию лучшей по следующим причинам:

Цифровой светодиодный источник света состоит из тысяч индивидуальных светодиодов, которые светят непосредственно на поверхность барабана через фокусирующие линзы. Этот массив сформирован в линейку, тянущуюся вдоль барабана, исключая при этом любые возможные проблемы, связанные с согласованием времени или искривлением.
Превосходное качество печати за счет меньшего размера точек. При разрешении 1200dpi теоретический идеальный размер точки вычисляется следующим образом:
25.4мм (1 дюйм) делится на 1200 = 20.4μм (20.4 микрометра). Лазерные головки могут произвести точки размером 60μм, в то время как сетодиодная головка Оки воспроизводит точки размером 34μм
Следующие три картинки показывают текст размером 2 поинта, напечатанные при помощи лазерной и светодиодной технологии (текст размером 2 поинта имеет в высоту всего 0.7мм!)




Высочайшая надежность
Светодиодный источник света не имеет движущихся частей и потому значительно более надежен. Компания Оки настолько уверена в его надежности, что предоставляет пожизненную гарантию на этот элемент!
Цифровой светодиодный источник имеет более высокую скорость при высоком разрешении печати, по сравнению с традиционным лазерным.
Превосходная скорость Как показано выше, лазерная головка должна сканировать лучем вдоль поверхности барабана на каждой строке изображения. Существует ограничение максимальной скорости вращения барабана, при которой сохраняется линейность сканирования. Так как в светодиодной технологии светодиодны выстроены в линейку вдоль фотобарабана, ни какого сканирования не нужно, поэтому такая технология не страдает от этой неприятности и потому может работать на значительно более высокой скорости. График показывает, что скорость не зависит от технологии для светодиодной печати, в случае же лазерной технологии необходимо снижать скорость при росте разрешения печати.


Основные преимущества светодиодной технологии:
• Меньше, более компактный размер позволяет Оки создавать принтеры меньшие по размеру, используя меньше материалов и мировых ресурсов.
• Меньший размер точек дает более четкий текст и графику
• Более четкий источник света дает лучшее качество изображений
• Технологически возможно использовать более высокую скорость печати при высоком разрешении
• Отсутствие движущихся частей дает поразительную мощность и надежность
Обычная лазерная система
1. Одиночный источник света
2. Фокусировка лазерного луча
3. Отражение лазерного луча
4. Рефракция лазерного луча
5. Вращающееся полигональное зеркало
6. Синхронизация стартовой линии
7. Запись на барабан
Цифровая светодиодная головка Оки
1. Запись на барабан
Цифровая светодиодная технология присутствует в каждом нашем страничном принтере. Преимущества нашей технологии становятся еще заметнее в цветных принтерах - ознакомьтесь с описанием нашей технологии однопроходной цветной печати.
Фактически, наша светодиодная технология столь хороша, что некоторые из наших конкурентов начинают использовать ее для своих высококачественных принтеров.

Сравнение классической лазерной и светодиодной технологий описано -
Светодиодные принтеры класса Лазерные(Laser-Class)

источник: OKI

www.print-city.ru

Светодиод — Википедия

Светодиодная лампа

Светодио́д или светоизлучающий диод (СД, СИД; англ. light-emitting diode, LED) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт о СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой[1]).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

Олег Лосев, советский физик, обнаруживший электролюминесценцию в карбиде кремния

Первое известное сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом[en] из Маркони Лабс[en]. Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.

Эти эксперименты были позже, независимо от Раунда, повторены в 1923 году О. В. Лосевым, который, экспериментируя в Нижегородской радиолаборатории с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.

Лосев показал, что электролюминесценция возникает вблизи спая материалов[2]. Теоретического объяснения явлению тогда не было. Лосев вполне оценил практическую значимость своего открытия, позволявшего создавать малогабаритные твёрдотельные (безвакуумные) источники света с очень низким напряжением питания (менее 10 В) и очень высоким быстродействием. Им были получены два авторских свидетельства на «Световое реле» (первое заявлено в феврале 1927 г.)[3]

В 1961 году Джеймс Роберт Байард (англ.)русск. и Гари Питтман из компании Texas Instruments открыли технологию инфракрасного светодиода на основе арсенида галлия (GaAs). После получения патента в 1962 году началось их промышленное производство.

Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода». Его бывший студент, Джордж Крафорд (англ.)русск., изобрёл первый в мире жёлтый светодиод и улучшил яркость красных и красно-оранжевых светодиодов в 10 раз в 1972 году. В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, специально адаптированный к передаче данных по волоконно-оптическим линиям связи.

Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку), их практическое применение было ограничено. Исследования Жака Панкова в лаборатории RCA привели к промышленному производству светодиодов; в 1971 году им был получен первый синий светодиод[4][5]. Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компании «Хьюллет-Паккард» удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.

В середине 1970-х годов в ФТИ им. А. Ф. Иоффе группой под руководством Жореса Алфёрова были получены новые материалы — полупроводниковые гетероструктуры, в настоящее время применяемые для создания лазерных и светодиодов[6][7]. После этого началось серийное промышленное производство светодиодов. Открытие было удостоено Нобелевской премий в 2000 году[8]. В 1983 году компания Citizen Electronics первой разработала и начала производство SMD-светодиодов, назвав их CITILED[9].

В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации «Nichia Chemical Industries», изобрели технологию изготовления синего светодиода (LED). За открытие дешевого синего светодиода в 2014 году им троим была присуждена Нобелевская премия по физике[10][11]. В 1993 году Nichia начала их промышленный выпуск, а в 1996 начала выпуск белых светодиодов[12].

Синий светодиод, в сочетании с зелёным и красным, дает белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные лампы и экраны со светодиодной подсветкой. В 2003 году, компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.

Обозначение светодиода в электрических схемах

Вольт-амперная характеристика светодиодов в прямом направлении нелинейна. Диод проводит ток, начиная с некоторого порогового напряжения. Это напряжение позволяет достаточно точно определить материал полупроводника.

Светодиод работает при пропускании через него тока в прямом направлении (то есть анод должен иметь положительный потенциал относительно катода).

Из-за круто возрастающей вольт-амперной характеристики p-n-перехода в прямом направлении светодиод должен подключаться к источнику тока. Подключение к источнику напряжения должно производиться через элемент (или электрическую цепь), ограничивающий ток, например, через резистор. Некоторые светодиоды могут иметь встроенную токоограничивающую цепь, в таком случае для них указывается диапазон допустимых напряжений источника питания.

Непосредственное подключение светодиода к источнику напряжения, превышающего заявленное изготовителем падение напряжения для конкретного светодиода, может вызвать протекание через него тока, превышающего предельно допустимый, перегрев и мгновенный выход из строя. В простейшем случае (для маломощных индикаторных светодиодов) токоограничивающая цепь представляет собой резистор, последовательно включенный со светодиодом. Для мощных светодиодов применяются схемы с ШИМ, которые поддерживают средний ток через светодиод на заданном уровне и, при необходимости, позволяют регулировать его яркость.

Недопустимо подавать на светодиоды напряжение обратной полярности от источника с малым внутренним сопротивлением. Светодиоды имеют невысокое (несколько вольт) обратное пробивное напряжение. В схемах, где возможно появление обратного напряжения, светодиод должен быть защищён параллельно включенным обычным диодом в противоположной полярности.

Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов, в следующей таблице приведены доступные цвета с диапазоном длин волн, падение напряжения на диоде и материал:

Цвет длина волны (нм) Напряжение (В) Материал полупроводника
Инфракрасный λ > 760 ΔU < 1,9 Арсенид галлия (GaAs)
Алюминия галлия арсенид (AlGaAs)
Красный 610 < λ < 760 1,63 < ΔU < 2,03 Алюминия-галлия арсенид (AlGaAs)
Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Оранжевый 590 < λ < 610 2,03 < ΔU < 2,10 Галлия фосфид-арсенид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Жёлтый 570 < λ < 590 2,10 < ΔU < 2,18 Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Зелёный 500 < λ < 570 1,9[15] < ΔU < 4,0 Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)
Галлия(III) фосфид (GaP)
Алюминия-галлия-индия фосфид (AlGaInP)
Алюминия-галлия фосфид (AlGaP)
Синий 450 < λ < 500 2,48 < ΔU < 3,7 Селенид цинка (ZnSe)
Индия-галлия нитрид (InGaN)
Карбид кремния (SiC) в качестве субстрата
Кремний (Si) в качестве субстрата — (в разработке)
Фиолетовый 400 < λ < 450 2,76 < ΔU < 4,0 Индия-галлия нитрид (InGaN)
Пурпурный Смесь нескольких спектров 2,48 < ΔU < 3,7 Двойной: синий/красный диод,
синий с красным люминофором,
или белый с пурпурным пластиком
Ультрафиолетовый λ < 400 3,1 < ΔU < 4,4 Алмаз (235 нм)[16]

Нитрид бора (215 нм)[17][18]
Нитрид алюминия (AlN) (210 нм)[19]
Нитрид алюминия-галлия (AlGaN)
Нитрид алюминия-галлия-индия (AlGaInN) — (менее 210 нм)[20]

Белый Широкий спектр ΔU ≈ 3,5 Сочетание трех светодиодов основных цветов (красный, синий, зеленый), либо люминофор, излучающий белый цвет под воздействием светодиода со спектром от синего до ультрафиолетового;

Несмотря на то, что в мире широко выпускаются белые светодиоды в конструктиве синего/фиолетового свечения кристалла с нанесенным на него желтым или оранжевым люминофором, ничто не мешает нанести и люминофоры другого цвета свечения. В результате нанесения красного люминофора получают пурпурные или розовые светодиоды, гораздо реже выпускают светодиоды салатового цвета, где на синий кристалл наносится люминофор зеленого цвета свечения.

Светодиоды также могут иметь цветной корпус.

В 2001 году Citizen Electronics первой в мире произвела цветной SMD светодиод из цветной пастели под названием PASTELITE[21].

По сравнению с другими электрическими источниками света светодиоды имеют следующие отличия:

  • Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами[22] и металлогалогенными лампами, достигнув 146 люмен на ватт[23].
  • Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).
  • Длительный срок службы (при достаточном охлаждении) — от 30 000 до 100 000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе происходит «деградация» кристалла и постепенное падение яркости.
  • Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп).
  • Спектр современных белых светодиодов бывает различным — от тёплого белого = 2700 К до холодного белого = 6500 К.
  • Спектральная чистота, достигаемая не фильтрами, а принципом устройства прибора.
  • Отсутствие инерционности — включаются сразу на полную яркость, в то время как у ртутно-люминофорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30 % до 100 % за 3—10 минут, в зависимости от температуры окружающей среды.
  • Различный угол излучения — от 15 до 180 градусов.
  • Низкая стоимость индикаторных светодиодов.
  • Безопасность — не требуются высокие напряжения, при должном охлаждении низкая температура светодиода, обычно не выше 60 °C.
  • Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
  • Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения в отличие от люминесцентных ламп.
  • Комнатное освещение

  • В автомобильных фарах

  • Декоративное применение

  • Подсветка линейкой светодиодов в IPod Touch 2G

На светодиодном экране показывают Tour de France 2010, Paris
  • В уличном, промышленном, бытовом освещении (в том числе светодиодная лента).
  • В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах).
  • Массив светодиодов используется в больших уличных экранах, в бегущих строках, информационных табло. Такие массивы часто называют светодиодными кластерами или просто кластерами.
  • В оптопарах.
  • Мощные светодиоды используются как источник света в фонарях, прожекторах, светофорах, лампах тормозного освещения в автомобилях.
  • Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интернет[24]).
  • В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры, планшеты и т. д.).
  • В играх, игрушках, значках, USB-устройствах и прочее.
  • В светодиодных дорожных знаках.
  • В гибких ПВХ световых шнурах Дюралайт.
  • В растениеводстве, так называемые фитолампы, оптимизированные под фотосинтез. В северных странах перспективная замена освещения в теплицах.
Основная статья: OLED

Многослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.

Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов (2 года) непрерывной работы.

Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, OLED-телевизорах, для создания приборов ночного видения.

По размеру выручки лидером является японская «Nichia Corporation»[25].

Также крупным производителем светодиодов является «Royal Philips Electronics», политика которого заключается в приобретении компаний, изготавливающих светодиоды. Так, «Hewlett-Packard» в 2005 году продал компании «Philips» своё подразделение «Lumileds Lighting», а в 2006 были приобретены «Color Kinetics» и «TIR Systems» — компании с широкой технологической сетью по производству светодиодов с белым спектром излучения.

«Nichia Chemical» — подразделение компании «Nichia Corporation», где были впервые разработаны белый и синий светодиоды. На текущий момент ей принадлежит лидерство в производстве сверхъярких светодиодов: белых, синих и зелёных. Помимо вышеперечисленных гигантов, следует также отметить следующие компании: «Cree», «Emcore Corp.», «Veeco Instruments», «Seoul Semiconductor» и «Germany’s Aixtron», занимающиеся производством чипов и отдельных светодиодов.

Яркие светодиоды на подложках из карбида кремния производит американская компания «Cree».

Крупнейшими[26] производителями светодиодов в России и Восточной Европе являются компании «Оптоган» и «Светлана-Оптоэлектроника». «Оптоган» создана при поддержке ГК «Роснано». Производственные мощности компании расположены в Санкт-Петербурге. «Оптоган» занимается производством как светодиодов, так и чипов и матриц, а также участвует во внедрении светодиодов для общего освещения.
«Светлана-Оптоэлектроника» (г. Санкт-Петербург) — объединяет предприятия, которые осуществляют полный технологический цикл разработки и производства светодиодных систем освещения: от эпитаксиального выращивания полупроводниковых гетероструктур до сложных автоматизированных систем интеллектуального управления освещением.
Также крупным предприятием по производству светодиодов и устройств на их основе можно назвать завод «Samsung Electronics» в Калужской области.

  1. ↑ Принцип работы светодиода (рус.). ledflux.ru. Дата обращения 15 марта 2018.
  2. ↑ ФИЗИК ЛОСЕВ Жизнь ученого Лосева Олега Владимировича
  3. ↑ О. В. Лосев — изобретатель кристадина и светодиода К 100-летию со дня рождения. Автор: Ю. Р. Носов
  4. ↑ Light Emitting Diode
  5. ↑ Milestones on Development of LED (неопр.) (недоступная ссылка). Дата обращения 9 октября 2014. Архивировано 14 октября 2014 года.
  6. Самсонов А. Жорес Алфёров: флагман отечественной электроники (рус.) // Экология и жизнь : журнал. — 2010. — № 5.
  7. ↑ Полупроводниковые гетероструктуры: от классических к низкоразмерным, или «конструктор» от Нобелевского лауреата (рус.). МФТИ. Дата обращения 21 марта 2019.
  8. ↑ The Nobel Prize in Physics 2000 (рус.). The Nobel Prize. Дата обращения 21 марта 2019.
  9. ↑ History | CITIZEN ELECTRONICS CO.,LTD. (неопр.). ce.citizen.co.jp. Дата обращения 1 июня 2019.
  10. ↑ Нобелевская премия по физике присуждена за LED (рус.). BBC Russian (7 октября 2014). Дата обращения 21 марта 2019.
  11. ↑ Нобелевская премия по физике присуждена за изобретение эффективных синих светодиодов (рус.). ТАСС (7 октября 2014). Дата обращения 21 марта 2019.
  12. ↑ Nichia/История (рус.). Nichia. Дата обращения 16 июня 2019.
  13. ↑ COB светодиоды и лампы на их основе // ledjournal.info.
  14. ↑ Мал CSP-светодиод, да дешев // 19.03.2016 г. А. Васильев. elec.ru.
  15. ↑ OSRAM: green LED (неопр.) (недоступная ссылка). Дата обращения 17 января 2011. Архивировано 21 июля 2011 года.
  16. Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H. Ultraviolet Emission from a Diamond pn Junction (англ.) // Science. — 2001. — Vol. 292, no. 5523. — P. 1899. — doi:10.1126/science.1060258. — PMID 11397942.
  17. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure (англ.) // Science : journal. — 2007. — Vol. 317, no. 5840. — P. 932. — doi:10.1126/science.1144216. — PMID 17702939.
  18. Watanabe, Kenji; Taniguchi, Takashi; Kanda, Hisao. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal (англ.) // Nature Materials : journal. — 2004. — Vol. 3, no. 6. — P. 404. — doi:10.1038/nmat1134. — PMID 15156198.
  19. Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres (англ.) // Nature : journal. — 2006. — Vol. 441, no. 7091. — P. 325. — doi:10.1038/nature04760. — PMID 16710416.
  20. ↑ LEDs move into the ultraviolet, physicsworld.com (17 мая 2006). Дата обращения 13 августа 2007.
  21. ↑ Pastel Color Chip LED (неопр.).
  22. Натриевая лампа — статья из Большой советской энциклопедии (3-е издание)
  23. ↑ [http://ce.citizen.co.jp/up_img/news/W2JUhsNaM3Ji/20151026_e.pdf Expansion of the product lineup of LEDs for lighting ‘COB Series’: Development of “LEDs that have achieved the world’s highest-class luminous flux of more than 70,000 lm”] (неопр.).
  24. ↑ Китайские ученые построили беспроводную сеть на светодиодах (неопр.). Lenta.ru (18 мая 2010). Дата обращения 14 августа 2010.
  25. ↑ 3Q13 Global LED Market Share Leaders Архивная копия от 11 октября 2014 на Wayback Machine, Steve Sechrist, 11/19/2013
  26. ↑ В Петербурге запустили завод светодиодов

ru.wikipedia.org

Светодиодная лента — Википедия

Материал из Википедии — свободной энциклопедии

Светодиодная лента на светодиодах SMD3528, 120 светодиодов на 1 метр. Поперечной линией с контактными площадками обозначены отдельные блоки светодиодов, по которой при необходимости отрезается лента необходимой длины

Светодио́дная ле́нта — источник света, собранный на основе светодиодов. Представляет собой гибкую печатную (монтажную) плату, на которой равноудалённо друг от друга расположены светодиоды. Обычно ширина ленты составляет 8-20 мм, толщина (со светодиодами) 2—3 мм. При изготовлении лента сматывается в рулоны длиной 1 до 30 м. Для ограничения тока через светодиоды, в электрическую схему ленты вводятся балластные сопротивления (резисторы), которые также монтируются на ленте.

Принципиальная электрическая схема монохромной светодиодной ленты — блоки из нескольких светодиодов с резистором соединённых последовательно, объединённые между собой параллельно основными токопроводящими дорожками ленты (обычно, при напряжении питания ленты 12 В, по 3 светодиода в блоке). По этой причине при отрезании ленты вне обозначенных на ней мест светодиоды повреждённого блока перестают работать


Светодиодные ленты производятся с использованием SMD- и DIP-технологий. Цифры в обозначении означают размер чипа кристалла в десятых долях миллиметра (SMD 3528 — размер 3,5 мм на 2,8 мм).

В зависимости от типа светодиодов ленты разделяются по величине светового потока (количеству светодиодов в 1 метре ленты) и цвету свечения. Бывают ленты с монохромным свечением (красного, зелёного, синего, жёлтого, белого цвета) и многоцветные (с возможностью создания практически любого оттенка, RGB). Так же, как и светодиоды с белым цветом, светодиодные ленты бывают различной цветовой температуры — от 2700 К до 10000 К.

В конструкции RGB-ленты используются либо размещённые на одной основе (ленте) чередующиеся светодиоды трёх цветов (красный, зелёный, синий), то есть эту ленту можно представить как три одноцветные ленты, либо трёхкомпонентные RGB-светодиоды, имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.

Светодиодная лента работает от постоянного тока и подключается к постоянному напряжению, величиной обычно 12 В, реже 24 В и 5 В. Поэтому для подключения светодиодной ленты к сети электропитания дополнительно необходим преобразующий блок питания.

Для плавного управления яркостью и цветом свечения цветной светодиодной ленты применяются контроллеры, принцип работы которых состоит в изменении яркости свечения светодиодов отдельно по каждому цвету. Многие контроллеры могут управляться с помощью пульта дистанционного управления.

Большинство лент имеют ограничение по длине последовательно подключенных участков в 5 метров (ограничено сопротивлением току токопроводящих дорожек ленты, соответственно с падением напряжения и нагревом их при большей длине), поэтому реализуя проекты с большим количеством ленты следует использовать параллельную схему подключения. При этом также следует учитывать сечение провода: чем больше расстояние между блоком питания и лентой, тем выше потери, и соответственно тем больше требуется сечение провода.

Расчет необходимой мощности блока питания осуществляется исходя из номинальной мощности ленты, длины подключаемых участков, а также коэффициента запаса, который обычно следует принимать как 1,15. Так к примеру для ленты 240 SMD 3014, общей длиной в 4 метра потребуется блок питания мощностью = 24 Вт (номинальная мощность ленты) * 4 м * 1,15 (коэффициент запаса) = 110,4 Вт.

Характеристики некоторых светодиодных лент в зависимости от используемых светодиодов[1]
Применяемый светодиод Количество светодиодов в 1 метре ленты Напряжение на которое рассчитана лента Cила тока возникающая в цепи питания ленты и на которую должен быть рассчитан блок питания Мощность потребления 1 метра ленты
3528 60 12 В 0,4 А 4,8 Вт
120 0,8 А 9,6 Вт
240 1,6 А 19,2 Вт
5050 30 0,6 А 7,2 Вт
60 1,2 А 14,8 Вт
120 2,4 А 29 Вт
240 24 В 2,4 А 58 Вт
Радужная 3-цветная тень от предметов при общем белом фоне освещения многоцветной светодиодной лентой с монохромными светодиодами 3-х основных цветов, возникающая вследствие того, что точки излучения света разных цветов разнесены друг от друга на ленте на несколько сантиметров

Преимущества[править | править код]

  • Простота монтажа. Многие ленты имеют на обратной стороне двухсторонний скотч, что позволяет её легко крепить практически на любые поверхности.
  • Невысокая цена эксплуатации. По отношению световой поток/стоимость эксплуатационных расходов светодиоды имеют один из самых высоких показателей.[2].
  • Надёжность. По сравнению с традиционными лампами накаливания и люминесцентными лампами, светодиоды имеют бо́льший срок службы.
  • Неограниченный потенциал в увеличении светового потока по сравнению с точечными источниками, совместимыми со старой арматурой. Нет опасности перегрева элементов — световой поток пропорционален длине ленты.
  • Возможность реализации оригинальных дизайнерских решений за счет гибкости и небольшой толщины светодиодной ленты [3].
  • Возможность выбора желаемого цветового оттенка сцены при использовании RGB-светодиодных лент с контроллерами, позволяющими управлять независимо яркостью каждого канала[4] и также применение художественных эффектов поддерживаемых большинством контроллеров (мигание, смена цветов, плавное перетекание оттенков из одного в другой, эффект «бегущей волны», регулировка яркости и т. д., как вручную, так и предустановленными режимами работы контроллера).
  • Отсутствие необходимости в дополнительной влагозащитной арматуре при использовании влагозащищённых светодиодных лент и блоков питания (или размещении блоков питания вне помещений с повышенной влажностью).
  • Электробезопасность обусловленная низким напряжением питания самих лент (при условии использования блоков питания имеющих трансформаторы и гальванический разрыв между цепями питания ленты и питания самого блока).

Недостатки[править | править код]

  • При одинаковом световом потоке, стоимость светодиодной ленты выше, чем традиционных источников света, таких как лампа накаливания или люминесцентная лампа (на 2012 год).
  • Полностью несовместима со старой арматурой.
  • Худшие показатели цветопередачи при использовании RGB-ленты по сравнению с белым светодиодом. Это связано с тем, что применяемые светодиоды 3528/5050 имеют невысокий индекс цветопередачи на уровне 80, а некоторыми производителями вовсе не нормируется [5].
Пример применения светодиодной ленты в освещении комнаты Синий светодиодный шнур

Компактные размеры, большая гамма цветов и малое потребление электроэнергии определили широкое применение светодиодной ленты. Подсветка интерьера домов и квартир (потолков, напольная, периметров помещений, арок и ниш), дизайн экстерьера (контуры зданий, фонтаны, бассейны, архитектурные элементы), рекламная подсветка, автомобильный дизайн, мебельное освещение — все это сферы, где можно применять и использовать светодиодные ленты[2][3].

Герметичные (влагозащищённые) светодиодные ленты и шнуры c IP6X используются для внешней подсветки зданий и сооружений и для сигнализации на дорогах (в том числе для размещения на транспортных средствах), а также применяются в помещениях с повышенной влажностью[6].

ru.wikipedia.org


Смотрите также



© 2010- GutenBlog.ru Карта сайта, XML.